From Wikipedia, the free encyclopedia
A generalization of both Ramsey's theorem and Hindman's theorem
In mathematics , the Milliken–Taylor theorem in combinatorics is a generalization of both Ramsey's theorem and Hindman's theorem . It is named after Keith Milliken and Alan D. Taylor .
Let
P
f
(
N
)
{\displaystyle {\mathcal {P}}_{f}(\mathbb {N} )}
denote the set of finite subsets of
N
{\displaystyle \mathbb {N} }
, and define a partial order on
P
f
(
N
)
{\displaystyle {\mathcal {P}}_{f}(\mathbb {N} )}
by α<β if and only if max α<min β. Given a sequence of integers
⟨
a
n
⟩
n
=
0
∞
⊂
N
{\displaystyle \langle a_{n}\rangle _{n=0}^{\infty }\subset \mathbb {N} }
and k > 0 , let
[
F
S
(
⟨
a
n
⟩
n
=
0
∞
)
]
<
k
=
{
{
∑
t
∈
α
1
a
t
,
…
,
∑
t
∈
α
k
a
t
}
:
α
1
,
⋯
,
α
k
∈
P
f
(
N
)
and
α
1
<
⋯
<
α
k
}
.
{\displaystyle [FS(\langle a_{n}\rangle _{n=0}^{\infty })]_{<}^{k}=\left\{\left\{\sum _{t\in \alpha _{1}}a_{t},\ldots ,\sum _{t\in \alpha _{k}}a_{t}\right\}:\alpha _{1},\cdots ,\alpha _{k}\in {\mathcal {P}}_{f}(\mathbb {N} ){\text{ and }}\alpha _{1}<\cdots <\alpha _{k}\right\}.}
Let
[
S
]
k
{\displaystyle [S]^{k}}
denote the k -element subsets of a set S . The Milliken–Taylor theorem says that for any finite partition
[
N
]
k
=
C
1
∪
C
2
∪
⋯
∪
C
r
{\displaystyle [\mathbb {N} ]^{k}=C_{1}\cup C_{2}\cup \cdots \cup C_{r}}
, there exist some i ≤ r and a sequence
⟨
a
n
⟩
n
=
0
∞
⊂
N
{\displaystyle \langle a_{n}\rangle _{n=0}^{\infty }\subset \mathbb {N} }
such that
[
F
S
(
⟨
a
n
⟩
n
=
0
∞
)
]
<
k
⊂
C
i
{\displaystyle [FS(\langle a_{n}\rangle _{n=0}^{\infty })]_{<}^{k}\subset C_{i}}
.
For each
⟨
a
n
⟩
n
=
0
∞
⊂
N
{\displaystyle \langle a_{n}\rangle _{n=0}^{\infty }\subset \mathbb {N} }
, call
[
F
S
(
⟨
a
n
⟩
n
=
0
∞
)
]
<
k
{\displaystyle [FS(\langle a_{n}\rangle _{n=0}^{\infty })]_{<}^{k}}
an MTk set . Then, alternatively, the Milliken–Taylor theorem asserts that the collection of MTk sets is partition regular for each k .
References
Milliken, Keith R. (1975), "Ramsey's theorem with sums or unions", Journal of Combinatorial Theory , Series A, 18 : 276–290, doi :10.1016/0097-3165(75)90039-4 , MR 0373906 .
Taylor, Alan D. (1976), "A canonical partition relation for finite subsets of ω", Journal of Combinatorial Theory , Series A, 21 (2): 137–146, doi :10.1016/0097-3165(76)90058-3 , MR 0424571 .