Nanosensors (company)
This article contains promotional content. (February 2012) |
Product type | Nanotechnology AFM probes AFM tips AFM cantilevers |
---|---|
Owner | NanoWorld |
Introduced | 1993 |
Markets | worldwide |
Tagline | The World Leader in Scanning Probes |
Website | www |
Nanosensors is a brand of SPM and AFM probes for atomic force microscopy (AFM) and scanning probe microscopy (SPM).
History
Basic research at IBM led to the development of the basic technologies necessary for batch processing of silicon SPM and AFM probes using bulk micromachining.
In 1993 under the brand name Nanosensors they became the first commercialized SPM and AFM probes worldwide. The development and introduction of batch processing to producing AFM probes was a crucial step to the introduction of the Atomic Force Microscope into the high tech industry. In recognition of this achievement, Nanosensors has been discerned the Dr.-Rudolf-Eberle Innovation Award of the German State of Baden-Württemberg [1] in 1995, the Innovation Prize of the German Industry [2] in 1995 as well as the Innovation Award of the Förderkreis für die Mikroelektronik e.V.[3] in 1999.
In 2002, Nanosensors was acquired by and integrated into Switzerland-based NanoWorld. It continues as an independent business unit.
Significance
Researchers have developed a large array of operating modes and methods for Scanning probe microscopy and Atomic Force Microscopy. Independently of the method, their use and application requires essentially a versatile SPM- or AFM-instrument which must be equipped with a method-specific SPM or AFM probe.
As Nanosensors supplies SPM- or AFM-users worldwide with the broadest choice of SPM or AFM probes, some therefore consider this company a "giant" of this industry.[4]
Nanosenors is frequently cited as the supplier of the SPM or AFM probes in nanotechnology research papers (see below) – reflecting its market position and that often it is the only commercial source for these products worldwide.
Products
AFM Probe Series
PointProbePlus
The PointProbePlus series is directly based on the technology originally developed and commercialized by Nanosensors in 1993. The original PointProbe technology has been upgraded to the PointProbePlus technology in 2004 yielding a reduced variation of tip shape and increased reproducibility of images. It is manufactured from highly doped monocrystalline silicon. The tip is pointing into the <100> crystal direction.
- PointProbePlus XY-Alignment Series & Alignment Chip
- PointProbePlus Silicon MFM Probe Series[5][6]
- SuperSharpSilicon[7][8]
- High Aspect Ratio AFM probes[9]
AdvancedTEC
The tip of the AdvancedTEC AFM probe series[10] protrudes from the end of the cantilever and is visible through the optical system of the atomic force microscope. This visibility from the top allows the operator of the microscope to position the tip of this AFM probe at the point of interest.
- Akiyama-Probe[11]
Applications
- Non-contact mode / tapping mode microscopy[12][13]
- Force modulation microscopy[14]
- Contact Mode[15]
- Electrostatic force microscopy,[16] Electrical measurement
- Magnetic force microscopy[17][18]
- Lateral force microscopy[19]
- Trench measurement
- Nanoindentation[20][21]
- Self-sensing and self-actuating Akiyama probe (A-Probe) for dynamic mode atomic force microscopy (AFM)[22][23][24]
- Tipless cantilevers[25][26] for probe modification
Accessories
References
- ^ Dr.-Rudolf-Eberle-Preis – Innovationspreis des Landes Baden Württemberg, Auszeichungen, Preisträger 1995
- ^ Innovationspreis der deutschen Wirtschaft, Erster Innovationspreis der Welt, Preisträger der Vorjahre, 1995
- ^ Annual Innovation Award of the Förderkreis Mikroelektronik, Industrie- und Handelskammer Nürnberg für Mittelfranken
- ^ Stevens, R. M. (2009). "New carbon nanotube AFM probe technology". Materials Today. 12 (10): 42–86. doi:10.1016/S1369-7021(09)70276-7.
- ^ Scott, J.; McVitie, S.; Ferrier, R. P.; Gallagher, A. (2001). "Electrostatic charging artefacts in Lorentz electron tomography of MFM tip stray fields" (PDF). Journal of Physics D: Applied Physics. 34 (9): 1326. Bibcode:2001JPhD...34.1326S. doi:10.1088/0022-3727/34/9/307.
- ^ Pulwey, R.; Rahm, M.; Biberger, J.; Weiss, D. (2001). "Switching behavior of vortex structures in nanodisks". IEEE Transactions on Magnetics. 37 (4): 2076. Bibcode:2001ITM....37.2076P. doi:10.1109/20.951058.
- ^ Xiaohui Tang; Bayot, V.; Reckinger, N.; Flandre, D.; Raskin, J. -P.; Dubois, E.; Nysten, B. (2009). "A Simple Method for Measuring Si-Fin Sidewall Roughness by AFM". IEEE Transactions on Nanotechnology. 8 (5): 611. Bibcode:2009ITNan...8..611T. doi:10.1109/TNANO.2009.2021064.
- ^ Sobchenko, I.; Pesicka, J.; Baither, D.; Stracke, W.; Pretorius, T.; Chi, L.; Reichelt, R.; Nembach, E. (2007). "Atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) of nanoscale plate-shaped second phase particles" (PDF). Philosophical Magazine. 87 (17): 2427. doi:10.1080/14786430701203184.
- ^ Juang, B. J.; Huang, K. Y.; Liao, H. S.; Leong, K. C.; Hwang, I. S. (2010). "AFM pickup head with holographic optical element (HOE)". 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. p. 442. doi:10.1109/AIM.2010.5695758. ISBN 978-1-4244-8031-9.
- ^ Bolopion, A.; Hui Xie; Haliyo, D. S.; Regnier, S. (2010). "3D haptic handling of microspheres". 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. p. 6131. doi:10.1109/IROS.2010.5650443. ISBN 978-1-4244-6674-0.
- ^ Trumper, D. L.; Hocken, R. J.; Amin-Shahidi, D.; Ljubicic, D.; Overcash, J. (2011). "High-Accuracy Atomic Force Microscope". Control Technologies for Emerging Micro and Nanoscale Systems. Lecture Notes in Control and Information Sciences. Vol. 413. p. 17. doi:10.1007/978-3-642-22173-6_2. ISBN 978-3-642-22172-9.
- ^ Nemesincze, P.; Osvath, Z.; Kamaras, K.; Biro, L. (2008). "Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy". Carbon. 46 (11): 1435. arXiv:0812.0690. doi:10.1016/j.carbon.2008.06.022.
- ^ Haugstad, G.; Jones, R. R. (1999). "Mechanisms of dynamic force microscopy on polyvinyl alcohol: Region-specific non-contact and intermittent contact regimes". Ultramicroscopy. 76 (1–2): 77–86. doi:10.1016/S0304-3991(98)00073-4.
- ^ Deleu, M. (2001). "Imaging mixed lipid monolayers by dynamic atomic force microscopy". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1513: 55–62. doi:10.1016/S0005-2736(01)00337-6. PMID 11427194.
- ^ Kimura, K.; Kobayashi, K.; Yamada, H.; Horiuchi, T.; Ishida, K.; Matsushige, K. (2004). "Orientation control of ferroelectric polymer molecules using contact-mode AFM". European Polymer Journal. 40 (5): 933. doi:10.1016/j.eurpolymj.2004.01.015.
- ^ Diesinger, H.; Deresmes, D.; Nys, J. -P.; Mélin, T. (2010). "Dynamic behavior of amplitude detection Kelvin force microscopy in ultrahigh vacuum". Ultramicroscopy. 110 (2): 162–169. doi:10.1016/j.ultramic.2009.10.016. PMID 19939564.
- ^ Luan, L.; Auslaender, O.; Bonn, D.; Liang, R.; Hardy, W.; Moler, K. (2009). "Magnetic force microscopy study of interlayer kinks in individual vortices in the underdoped cuprate superconductor YBa2Cu3O6+x". Physical Review B. 79 (21): 214530. arXiv:0811.0584. Bibcode:2009PhRvB..79u4530L. doi:10.1103/PhysRevB.79.214530.
- ^ Nazaretski, E.; Thibodaux, J. P.; Vekhter, I.; Civale, L.; Thompson, J. D.; Movshovich, R. (2009). "Direct measurements of the penetration depth in a superconducting film using magnetic force microscopy". Applied Physics Letters. 95 (26): 262502. arXiv:0909.1360. Bibcode:2009ApPhL..95z2502N. doi:10.1063/1.3276563.
- ^ Lantz, M. A.; o’Shea, S. J.; Hoole, A. C. F.; Welland, M. E. (1997). "Lateral stiffness of the tip and tip-sample contact in frictional force microscopy". Applied Physics Letters. 70 (8): 970. Bibcode:1997ApPhL..70..970L. doi:10.1063/1.118476.
- ^ Fraxedas, J.; Garcia-Manyes, S.; Gorostiza, P.; Sanz, F. (2002). "Nanoindentation: Toward the sensing of atomic interactions". Proceedings of the National Academy of Sciences. 99 (8): 5228–32. Bibcode:2002PNAS...99.5228F. doi:10.1073/pnas.042106699. PMC 122751. PMID 16578871.
- ^ Terán Arce, P. F. M.; Riera, G. A.; Gorostiza, P.; Sanz, F. (2000). "Atomic-layer expulsion in nanoindentations on an ionic single crystal". Applied Physics Letters. 77 (6): 839. Bibcode:2000ApPhL..77..839T. doi:10.1063/1.1306909.
- ^ Stucklin, S.; Gullo, M. R.; Akiyama, T.; Scheidiger, M. (2008). "Atomic force microscopy for industry with the Akiyama-Probe sensor". 2008 International Conference on Nanoscience and Nanotechnology. p. 79. doi:10.1109/ICONN.2008.4639250. ISBN 978-1-4244-1503-8.
- ^ Obrebski, J.W. (2010), Development of an Atomic Force Microscope (Master thesis)
- ^ Guo, T.; Wang, S.; Dorantes-Gonzalez, D. J.; Chen, J.; Fu, X.; Hu, X. (2011). "Development of a Hybrid Atomic Force Microscopic Measurement System Combined with White Light Scanning Interferometry". Sensors. 12 (1): 175–188. doi:10.3390/s120100175. PMC 3279207. PMID 22368463.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Holbery, J. D.; Eden, V. L.; Sarikaya, M.; Fisher, R. M. (2000). "Experimental determination of scanning probe microscope cantilever spring constants utilizing a nanoindentation apparatus". Review of Scientific Instruments. 71 (10): 3769. Bibcode:2000RScI...71.3769H. doi:10.1063/1.1289509.
- ^ Boukallel, M.; Girot, M.; Regnier, S. (2008). "A robotic platform for targeted studies on biological cells". 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. p. 624. doi:10.1109/BIOROB.2008.4762926. ISBN 978-1-4244-2882-3.
- ^ Korpelainen, V.; Lassila, A. (2007). "Calibration of a commercial AFM: Traceability for a coordinate system". Measurement Science and Technology. 18 (2): 395. Bibcode:2007MeScT..18..395K. doi:10.1088/0957-0233/18/2/S11.
- ^ Hwu, E. T.; Hung, S. K.; Yang, C. W.; Huang, K. Y.; Hwang, I. S. (2008). "Real-time detection of linear and angular displacements with a modified DVD optical head". Nanotechnology. 19 (11): 115501. Bibcode:2008Nanot..19k5501H. doi:10.1088/0957-4484/19/11/115501. PMID 21730551.