Hermite–Hadamard inequality

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 1234qwer1234qwer4 (talk | contribs) at 20:02, 9 June 2020 (→‎A corollary on Vandermonde-type integrals: decapitalise). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the Hermite–Hadamard inequality, named after Charles Hermite and Jacques Hadamard and sometimes also called Hadamard's inequality, states that if a function ƒ : [ab] → R is convex, then the following chain of inequalities hold:

The inequality has been generalized to higher dimensions: if is a bounded, convex domain and is a positive convex function, then

where is a constant depending only on the dimension.

A corollary on Vandermonde-type integrals

Suppose that −∞ < a < b < ∞, and choose n distinct values {xj}n
j=1
from (a, b). Let f:[a, b] → be convex, and let I denote the "integral starting at a" operator; that is,

.

Then

Equality holds for all {xj}n
j=1
iff f is linear, and for all f iff {xj}n
j=1
is constant, in the sense that

The result follows from induction on n.

References

  • Jacques Hadamard, "Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann", Journal de Mathématiques Pures et Appliquées, volume 58, 1893, pages 171–215.
  • Zoltán Retkes, "An extension of the Hermite–Hadamard Inequality", Acta Sci. Math. (Szeged), 74 (2008), pages 95–106.
  • Mihály Bessenyei, "The Hermite–Hadamard Inequality on Simplices", American Mathematical Monthly, volume 115, April 2008, pages 339–345.
  • Flavia-Corina Mitroi, Eleutherius Symeonidis, "The converse of the Hermite-Hadamard inequality on simplices", Expo. Math. 30 (2012), pp. 389–396. doi:10.1016/j.exmath.2012.08.011; ISSN 0723-0869
  • Stefan Steinerberger, The Hermite-Hadamard Inequality in Higher Dimensions, The Journal of Geometric Analysis, 2019.