Jump to content

Quantale

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 2601:681:100:3c7b:aca5:2f82:84f5:afd8 (talk) at 12:50, 27 July 2020 (References: Updated page title and URL for Encyclopedia of Mathematics reference. Existing link was dead.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, quantales are certain partially ordered algebraic structures that generalize locales (point free topologies) as well as various multiplicative lattices of ideals from ring theory and functional analysis (C*-algebras, von Neumann algebras). Quantales are sometimes referred to as complete residuated semigroups.

Overview

A quantale is a complete lattice Q with an associative binary operation ∗ : Q × QQ, called its multiplication, satisfying a distributive property such that

and

for all x, yi in Q, i in I (here I is any index set). The quantale is unital if it has an identity element e for its multiplication:

for all x in Q. In this case, the quantale is naturally a monoid with respect to its multiplication ∗.

A unital quantale may be defined equivalently as a monoid in the category Sup of complete join semi-lattices.

A unital quantale is an idempotent semiring under join and multiplication.

A unital quantale in which the identity is the top element of the underlying lattice is said to be strictly two-sided (or simply integral).

A commutative quantale is a quantale whose multiplication is commutative. A frame, with its multiplication given by the meet operation, is a typical example of a strictly two-sided commutative quantale. Another simple example is provided by the unit interval together with its usual multiplication.

An idempotent quantale is a quantale whose multiplication is idempotent. A frame is the same as an idempotent strictly two-sided quantale.

An involutive quantale is a quantale with an involution

that preserves joins:

A quantale homomorphism is a map f : Q1Q2 that preserves joins and multiplication for all x, y, xi in Q1, and i in I:

See also

References

  • C.J. Mulvey (2001) [1994], "Quantale", Encyclopedia of Mathematics, EMS Press [1]
  • J. Paseka, J. Rosicky, Quantales, in: B. Coecke, D. Moore, A. Wilce, (Eds.), Current Research in Operational Quantum Logic: Algebras, Categories and Languages, Fund. Theories Phys., vol. 111, Kluwer Academic Publishers, 2000, pp. 245–262.
  • M. Piazza, M. Castellan, Quantales and structural rules. Journal of Logic and Computation, 6 (1996), 709–724.
  • K. Rosenthal, Quantales and Their Applications, Pitman Research Notes in Mathematics Series 234, Longman Scientific & Technical, 1990.