Jump to content

Low-power wide-area network

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Acadwriter (talk | contribs) at 00:53, 28 July 2020 (→‎Others). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A low-power wide-area network (LPWAN) or low-power wide-area (LPWA) network or low-power network (LPN) is a type of wireless telecommunication wide area network designed to allow long-range communications at a low bit rate among things (connected objects), such as sensors operated on a battery.[1][2] The low power, low bit rate and intended use distinguish this type of network from a wireless WAN that is designed to connect users or businesses, and carry more data, using more power. The LPWAN data rate ranges from 0.3 kbit/s to 50 kbit/s per channel.[3]

A LPWAN may be used to create a private wireless sensor network, but may also be a service or infrastructure offered by a third party, allowing the owners of sensors to deploy them in the field without investing in gateway technology.

Technology attributes

  1. Long range: The operating range of LPWAN technology varies from a few kilometers in urban areas to over 10 km in rural settings. It can also enable effective data communication in previously infeasible indoor and underground locations.
  2. Low power: Optimized for power consumption, LPWAN transceivers can run on small, inexpensive batteries for up to 20 years
  3. Low cost: LPWAN's simplified, lightweight protocols reduce complexity in hardware design and lower device costs. Its long range combined with a star topology reduce expensive infrastructure requirements, and the use of license-free or licensed bands reduce network costs.

Platforms and technologies

There are a number of competing standards and vendors in the LPWAN space, the most prominent of which include[4]:

  • DASH7, a low latency, bi-directional firmware standard that operates over multiple LPWAN radio technologies including LoRa.
  • Chirp spread spectrum based
  • Sigfox, UNB-based technology and French company.[5]
  • Weightless is an open standard, narrowband technology for LPWAN used by Ubiik
  • Wize is an open and royalty free standard for LPWAN derived from the European Standard Wireless Mbus.[8]

Ultra-narrow band

Ultra Narrowband (UNB), modulation technology used for LPWAN by various companies including:

  • Sigfox, UNB-based technology and French company.[9]
  • Telensa[10] A Cambridge-based company using UNB-based technology to connect and control streetlights and other city infrastructure.
  • Nwave,[11] proprietary technology developed in cooperation with MIT. Its first release without error correcting codes also forms the basis of the Weightless-N open protocol.[12]
  • Weightless, a set of communication standards from the Weightless SIG.[13]
  • NB-Fi Protocol, developed by WAVIoT company.[14]

Telegram splitting

Telegram splitting is a standardized LPWAN technology in the license-free spectrum.

  • MIoTy, telegram-splitting technology standardized by ETSI (TS 103 357).

Others

See also

References

  1. ^ Beser, Nurettin Burcak. "Operating cable modems in a low power mode." U.S. Patent No. 7,389,528. 17 June 2008.
  2. ^ Schwartzman, Alejandro, and Chrisanto Leano. "Methods and apparatus for enabling and disabling cable modem receiver circuitry." U.S. Patent No. 7,587,746. 8 September 2009.
  3. ^ Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiro, Borja Martinez, Joan Melià-Seguí and Thomas Watteyne. Understanding the Limits of LoRaWAN (January 2017).
  4. ^ Ramon Sanchez-Iborra; Maria-Dolores Cano (2016). "State of the Art in LP-WAN Solutions for Industrial IoT Services". Sensors. 16 (5): 708. doi:10.3390/s16050708. PMC 4883399. PMID 27196909.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ "SIGFOX Technology". Retrieved 2016-02-01.
  6. ^ "LoRa Integration - Link Labs". Link Labs. Retrieved 2016-02-01.
  7. ^ Jesus Sanchez-Gomez; Ramon Sanchez-Iborra (2017). "Experimental comparison of LoRa and FSK as IoT-communication-enabling modulations". IEEE Global Communications Conference (Globecom'17). doi:10.1109/GLOCOM.2017.8254530.
  8. ^ Sheldon, John (2019-06-25). "French IoT Satellite Company Kinéis Announces Strategic Partnerships With Objenious And Wize Alliance". SpaceWatch.Global. Retrieved 2019-08-02.
  9. ^ "SIGFOX Technology". Retrieved 2016-02-01.
  10. ^ "UNB Wireless - Telensa". Telensa. Retrieved 2016-02-01.
  11. ^ "Nwave Smart Parking Company".
  12. ^ Nwave
  13. ^ "Weightless-N - Weightless". www.weightless.org. Retrieved 2016-02-01.
  14. ^ "What is NB-Fi Protocol – WAVIoT LPWAN". WAVIoT LPWAN. Retrieved 2018-05-18.
  15. ^ "Framework Details". haystacktechnologies.com. Retrieved 2016-02-01.
  16. ^ Flynn, Kevin. "Evolution of LTE in Release 13". www.3gpp.org. Retrieved 2016-02-01.
  17. ^ "LTE-M, NB-LTE-M, & NB-IOT: Three 3GPP IoT Technologies To Get Familiar With". Link Labs. Retrieved 2016-02-01.
  18. ^ Huawei. "Huawei and partners Leading NB-IoT Standardization -- PHOENIX, Sept. 21, 20 15 /PR Newswire UK/ --". www.prnewswire.co.uk. Retrieved 2016-02-01.
  19. ^ "Ingenu's RPMA Technology". Ingenu. Retrieved 2016-02-01.
  20. ^ "Wi-SUN Alliance". Wi-SUN Alliance. 2018-08-15. Retrieved 2019-12-16.{{cite web}}: CS1 maint: url-status (link)