Jump to content

Smoothness (probability theory)

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by 2604:6000:b482:9f00:9d87:a186:efc0:d364 (talk) at 00:44, 29 August 2020 (Fixed missing absolute values (present in source).). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In probability theory and statistics, smoothness of a density function is a measure which determines how many times the density function can be differentiated, or equivalently the limiting behavior of distribution’s characteristic function.

Formally, we call the distribution of a random variable X ordinary smooth of order β [1] if its characteristic function satisfies

for some positive constants d0, d1, β. The examples of such distributions are gamma, exponential, uniform, etc.

The distribution is called supersmooth of order β [1] if its characteristic function satisfies

for some positive constants d0, d1, β, γ and constants β0, β1. Such supersmooth distributions have derivatives of all orders. Examples: normal, Cauchy, mixture normal.

References[edit]

  1. ^ a b Fan, Jianqing (1991). "On the optimal rates of convergence for nonparametric deconvolution problems". The Annals of Statistics. 19 (3): 1257–1272. doi:10.1214/aos/1176348248. JSTOR 2241949.
  • Lighthill, M. J. (1962). Introduction to Fourier analysis and generalized functions. London: Cambridge University Press.