Jump to content

Nodary

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Tarnoob (talk | contribs) at 20:40, 14 November 2020 (References: cat.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Nodary curve.

In physics and geometry, the nodary is the curve that is traced by the focus of a hyperbola as it rolls without slipping along the axis, a roulette curve. [1]

The differential equation of the curve is: .

Its parametric equation is:

where is the elliptic modulus and is the incomplete elliptic integral of the second kind and sn, cn and dn are Jacobi's elliptic functions.[1]

The surface of revolution is the nodoid constant mean curvature surface.

References

  1. ^ a b John Oprea, Differential Geometry and its Applications, MAA 2007. pp. 147–148