Jump to content

Reactive nitrogen

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Monkbot (talk | contribs) at 14:46, 13 December 2020 (Task 18 (cosmetic): eval 3 templates: del empty params (1×);). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Eutrophication, which is often caused by overabundance of reactive nitrogen, is apparent as increased turbidity in the northern part of the Caspian Sea, imaged from orbit.

Reactive nitrogen ("Nr") is a term used for a variety of nitrogen compounds that support growth directly or indirectly. Representative species include the gases nitrogen oxides (NOx), ammonia (NH3), nitrous oxide (N2O), as well as the anion nitrate (NO3). Most of these species are the result of intensive farming, especially the (mis)use of fertilizers. Although required for life, nitrogen is stored in the biosphere in an unreactive ("unfixed") form N2, which supports only a few life forms. Reactive nitrogen is however "fixed" and is readily converted into protein, which supports life, leading to depletion of oxygen in fresh waters by eutrophication.[1] Nr is removed from the biosphere via Denitrification.

A schematic representing the marine nitrogen cycle.

Reactive nitrogen compounds

In the environmental context, reactive nitrogen compounds include the following classes:

All of these compounds enter into the nitrogen cycle.

As a consequence, an excess of Nr can affect the environment relatively quickly. This also means that nitrogen-related problems need to be looked at in an integrated manner.[2]

References

Citations
  1. ^ Sutton, Mark A.; Bleeker, Albert (2013). "Environmental science: The shape of nitrogen to come". Nature. 494 (7438): 435–437. Bibcode:2013Natur.494..435S. doi:10.1038/nature11954. PMID 23426258. S2CID 4417543.
  2. ^ http://international.vrom.nl/pagina.html?id=37594 [dead link]
General references