Jump to content

mlpack

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by WikiCleanerBot (talk | contribs) at 11:40, 16 December 2020 (v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

mlpack
Initial releaseFebruary 1, 2008; 16 years ago (2008-02-01)[1]
Stable release
4.5.0[2] / 18 September 2024; 47 days ago (18 September 2024)
Repository
Written inC++, Python, Julia, Go
Operating systemCross-platform
Available inEnglish
TypeSoftware library Machine learning
LicenseOpen source (BSD)
Websitemlpack.org Edit this on Wikidata

mlpack is a machine learning software library for C++, built on top of the Armadillo library. mlpack has an emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and maximum flexibility for expert users.[3] Its intended target users are scientists and engineers.

It is open-source software distributed under the BSD license, making it useful for developing both open source and proprietary software. Releases 1.0.11 and before were released under the LGPL license. The project is supported by the Georgia Institute of Technology and contributions from around the world.

Miscellaneous features

Template classes for GRU, LSTM structures are available, thus the library also supports Recurrent Neural Networks.

There are bindings to R, Go, Julia,[4] and Python. Its binding system is extensible to other languages.

Supported algorithms

Currently mlpack supports the following algorithms and models:

mlpack uses the ensmallen mathematical optimization library for training many of the above models.

See also

References

  1. ^ "Initial checkin of the regression package to be released · mlpack/mlpack". February 8, 2008. Retrieved May 24, 2020.
  2. ^ "Release 4.5.0". 18 September 2024. Retrieved 22 September 2024.
  3. ^ Ryan Curtin; et al. (2013). "mlpack: A Scalable C++ Machine Learning Library". Journal of Machine Learning Research. 14 (Mar): 801–805. arXiv:1210.6293. Bibcode:2012arXiv1210.6293C.
  4. ^ https://github.com/mlpack/mlpack.jl