Jump to content

Vermeil's theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Monkbot (talk | contribs) at 17:44, 19 December 2020 (Task 18 (cosmetic): eval 3 templates: del empty params (2×); hyphenate params (3×);). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In differential geometry, Vermeil's theorem essentially states that the scalar curvature is the only (non-trivial) absolute invariant among those of prescribed type suitable for Albert Einstein’s theory of General Relativity.[1] The theorem was proved by the German mathematician Hermann Vermeil in 1917.[2]

Standard version of the theorem

The theorem states that the Ricci scalar [3] is the only scalar invariant (or absolute invariant) linear in the second derivatives of the metric tensor .

See also

Notes

  1. ^ Kosmann-Schwarzbach, Y. (2011), The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century: Invariance and Conservation Laws in the 20th Century, New York Dordrecht Heidelberg London: Springer, p. 71, doi:10.1007/978-0-387-87868-3, ISBN 978-0-387-87867-6
  2. ^ Vermeil, H. (1917). "Notiz über das mittlere Krümmungsmaß einer n-fach ausgedehnten Riemann'schen Mannigfaltigkeit". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse. 21: 334–344.
  3. ^ Let us recall that Ricci scalar is linear in the second derivatives of the metric tensor , quadratic in the first derivatives and contains the inverse matrix which is a rational function of the components .

References