Jump to content

AdS black hole

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Red Act (talk | contribs) at 04:39, 25 August 2014 (Fix a red link.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In theoretical physics, an AdS black hole is a black hole solution of general relativity or its extensions which represents an isolated massive object, but with a negative cosmological constant. Such a solution asymptotically approaches anti-de Sitter space at spatial infinity, and is a generalization of the Kerr vacuum solution, which asymptotically approaches Minkowski spacetime at spatial infinity.

In 3+1 dimensions, the metric is given by

where t is the time coordinate, r is the radial coordinate, Ω are the polar coordinates, C is a constant and k is the AdS curvature.

In general, in d+1 dimensions, the metric is given by

According to the AdS/CFT correspondence, if gravity were quantized, an AdS black hole would be dual to a thermal state on the conformal boundary. In the context of say, AdS/QCD, this would correspond to the deconfinement phase of the quark–gluon plasma.

See also