Antigen processing
Antigen processing is an immunological process that prepares antigens for presentation to special cells of the immune system called T lymphocytes. It is considered to be a stage of antigen presentation pathways. This process involves two distinct pathways for processing of antigens from an organism's own (self) proteins or intracellular pathogens (e.g. viruses), or from phagocytosed pathogens (e.g. bacteria); subsequent presentation of these antigens on class I or class II major histocompatibility complex (MHC) molecules is dependent on which pathway is used. Both MHC class I and II are required to bind antigen before they are stably expressed on a cell surface. MHC I antigen presentation typically (considering cross-presentation) involves the endogenous pathway of antigen processing, and MHC II antigen presentation involves the exogenous pathway of antigen processing. Cross-presentation involves parts of the exogenous and the endogenous pathways but ultimately involves the latter portion of the endogenous pathway (e.g. proteolysis of antigens for binding to MHC I molecules).
While the conventional distinction between the two pathways is useful, there are instances where extracellular-derived peptides are presented in the context of MHC class I and cytosolic peptides are presented in the context of MHC class II (this often happens in dendritic cells).
The Endogenous Pathway
The endogenous pathway is used to present cellular peptide fragments on the cell surface on MHC class I molecules. If a virus had infected the cell, viral peptides would also be presented, allowing the immune system to recognize and kill the infected cell. Worn out proteins within the cell become ubiquitinated, marking them for proteasome degradation. Proteasomes break the protein up into peptides that include some around nine amino acids long (suitable for fitting within the peptide binding cleft of MHC class I molecules). Transporter associated with antigen processing (TAP), a protein that spans the membrane of the rough endoplasmic reticulum, transports the peptides into the lumen of the rough endoplasmic reticulum (ER). Also within the rough ER, a series of chaperone proteins, including calnexin, calreticulin, ERp57, and Binding immunoglobulin protein (BiP) facilitates the proper folding of class I MHC and its association with β2 microglobulin. The partially folded MHC class I molecule then interacts with TAP via tapasin (the complete complex also contains calreticulin and Erp57 and, in mice, calnexin). Once the peptide is transported into the ER lumen it binds to the cleft of the awaiting MHC class I molecule, stabilizing the MHC and allowing it to be transported to the cell surface by the golgi apparatus.
The Exogenous Pathway
The exogenous pathway is utilized by specialized antigen presenting cells to present peptides derived from proteins that the cell has endocytosed. The peptides are presented on MHC class II molecules. Proteins are endocytosed and degraded by acid-dependent proteases in endosomes; this process takes about an hour.[1]
The nascent MHC class II protein in the rough ER has its peptide-binding cleft blocked by Ii (the invariant chain; a trimer) to prevent it from binding cellular peptides or peptides from the endogenous pathway. The invariant chain also facilitates MHC class II's export from the ER in a vesicle. This fuses with a late endosome containing the endocytosed, degraded proteins. The invariant chain is then broken down in stages, leaving only a small fragment called "Class II-associated invariant chain peptide" (CLIP) which still blocks the peptide binding cleft. An MHC class II-like structure, HLA-DM, removes CLIP and replaces it with a peptide from the endosome. The stable MHC class-II is then presented on the cell surface.
Cross-Presentation Processing
In Cross-presentation, peptides derived from extracellular proteins are presented in the context of MHC class I. The cell starts off with the exogenous pathways but diverts the antigens (cytosolic diversion) to the endogenous pathway. This can allow the cell to skip the parts of the endogenous pathway that involve synthesis of antigens from the antigenic genes with cellular machinery upon infection, because the endogenous pathway can involve infection before being able to present antigens with MHC I, and cross-presentation saves them the effort needed for that and allows the professional antigen-presenting cells (dendritic cells) to process and present antigens without getting infected, which does not tend to happen to dendritic cells and is quite common scenario of antigen-processing using the endogenous pathway.[2] Not all antigen-presenting cells utilize cross-presentation.
Virus Ways of Evading Antigen Processing
Certain species in the Cytolomegavirus family can cause the infected-cell to produce proteins like US2, 3, 6, and/or 11. US11 and US2mislead MHC I to the cytoplasm; US3 inhibits the transportation of MHC I in the ER (a part of the endogenous pathway and cross-presentation); US6 blocks peptide transportation by TAP to MHC I.
Mycobacterium tuberculosis inhibits phagosome-endosome fusion, thus avoiding being destroyed by the harsh environment of the phagosome.[3]
ICP47 from some herpesvirus block transport of the peptide by TAP. U21 from some human herpesvirus 7 binds and targets certain MHC I molecules for lysosomal degradation.
E19 from some adenoviruses block the movement of MHC I to the proper locations for the endogenous pathway.
Nef from some HIV strains enhance the movement of MHC molecules back into the cytoplasm, preventing them from presentating antigens.
The Role of Langerhans' Dendritic Cells in Antigen Processing
Langerhans' cells are particular type of dendritic cells present in non lymphoid tissues together with interstitial cells.When these cells(at immature stage) come in contact with antigenic cells or disease causing viruses etc. these cells produce an inflammatory stimulus and start antigen processing and move toward lymph nodes where these APCs present antigen to mature T lymphocytes.
T-Cell-Dependent Antigen Processing
This section is empty. You can help by adding to it. (June 2013) |
B-Cell Activation with B-T Cell Interactions
This section is empty. You can help by adding to it. (June 2013) |
Antigen Processing for Cytotoxic Lymphocyte Actions
This section is empty. You can help by adding to it. (June 2013) |
See also
- Major histocompatibility complex (MHC)
- T cell
- Cross-presentation
- Antigen presenting cell
- Antigen presentation
- Polyclonal response
References
- ^ Lee, Tim; McGibbon, Angela. "Dalhousie Immunology Bookcase: T and B cell interaction". Immunology for Medical Students. Dalhousie University. Archived from the original on 4 June 2008. Retrieved 2008-06-23.
{{cite web}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - ^ "Cross-presentation in viral immunity and self-tolerance". Nature Reviews Immunology. 1: 126–134. November 2001. doi:10.1038/35100512. Retrieved 28 April 2013.
{{cite journal}}
: Unknown parameter|authors=
ignored (help) - ^ Deretic, V., & Fratti, R. A. (1999). Mycobacterium tuberculosis phagosome. Molecular microbiology, 31(6), 1603-1609. Chicago
- Richard A. Goldsby; et al. (2002). Immunology (5th ed.). W.H. Freeman. ISBN 0-7167-4947-5.
External links
- Antigen+Processing at the U.S. National Library of Medicine Medical Subject Headings (MeSH)