Bis(triphenylphosphine)palladium chloride

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Sadafhasanbeigi (talk | contribs) at 07:45, 20 May 2021 (I’ve added a link). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Bis(triphenylphosphine)palladium chloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.034.299 Edit this at Wikidata
  • InChI=1S/2C18H15P.2ClH.Pd/c2*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h2*1-15H;2*1H;/q;;;;+2/p-2 checkY
    Key: YNHIGQDRGKUECZ-UHFFFAOYSA-L checkY
  • InChI=1/2C18H15P.2ClH.Pd/c2*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h2*1-15H;2*1H;/q;;;;+2/p-2
    Key: YNHIGQDRGKUECZ-NUQVWONBAO
  • ionic form: [Pd+2].[Cl-].[Cl-].c3c(P(c1ccccc1)c2ccccc2)cccc3.c1ccccc1P(c2ccccc2)c3ccccc3
  • coordination form: Cl[Pd-2](Cl)([P+](c0ccccc0)(c0ccccc0)(c0ccccc0))[P+](c0ccccc0)(c0ccccc0)(c0ccccc0)
Properties
C36H30Cl2P2Pd
Molar mass 701.90 g·mol−1
Appearance yellow powder
Melting point 260°C (decomposed around 300°C)
Insoluble in water, acetone, ether, Carbon tetrachloride and n-heptane // Soluble in CHCl3 and CH2Cl2, Chloroform (Slightly), Methanol (Slightly, Heated)
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
Flash point 181.7°C
Related compounds
Related compounds
Bis(triphenylphosphine)platinum chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Bis(triphenylphosphine)palladium chloride is a coordination compound of palladium containing two triphenylphosphine and two chloride ligands. It is a yellow solid that is soluble in some organic solvents. It is used for palladium-catalyzed coupling reactions, e.g. the Sonogashira–Hagihara reaction. The complex is square planar. Many analogous complexes are known with different phosphine ligands.

Preparation and reactions

This compound may be prepared by treating palladium(II) chloride with triphenylphosphine:[1][2]

PdCl2 + 2 PPh3 → PdCl2(PPh3)2

Upon reduction with hydrazine in the presence of excess triphenylphosphine, the complex is a precursor to tetrakis(triphenylphosphine)palladium, Pd(PPh3)4:[3]

2 PdCl2(PPh3)2 + 4 PPh3 + 5 N2H4 → 2 Pd(PPh3)4 + N2 + 4 N2H5+Cl

Structure

Several crystal structures containing PdCl2(PPh3)2 have been reported. In all of the structures, PdCl2(PPh3)2 adopts a square planar coordination geometry and the trans isomeric form.[4][5][6][7]

Applications

The complex is used as a pre-catalyst for a variety of coupling reactions.[8]

One-pot Procedure for the Synthesis of Unsymmetrical Diarylalkynes.

The Suzuki reaction was once limited by high levels of catalyst and the limited availability of boronic acids. Replacements for halides were also found, increasing the number of coupling partners for the halide or pseudohalide as well. Using bis(triphenylphosphine)palladium chloride as the catalyst, triflates and boronic acids have been coupled on an 80 kilogram scale in good yield.[9] The same catalyst is effective for the Sonogashira coupling.[10]

See also

References

  1. ^ "Palladium-Catalyzed Reaction of 1-Alkenylboronates with Vinylic Halides: (1Z,3E)-1-Phenyl-1,3-octadiene". Organic Syntheses. 68: 130. 1990. doi:10.15227/orgsyn.068.0130. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  2. ^ "Homogeneous Catalysis in the Reactions of olefinic Substances. V.Hydrogenation of Soybean Oil Methyl Ester with Triphenylphosphine and Triphenylarsine Palladium Catalysts". Journal of the American Oil Chemists' Society. 44: 147. 1967. doi:10.1007/BF02558176. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  3. ^ D. R. Coulson (1972). Tetrakis(triphenylphosphine)palladium(0). Inorganic Syntheses. Vol. 13. pp. 121–124. doi:10.1002/9780470132449.ch23. ISBN 9780470132449. {{cite book}}: |journal= ignored (help)
  4. ^ "trans-Dichlorobis(triphenylphosphine)palladium(II)". Acta Crystallogr. B38 (10): 2679–2681. 1982. doi:10.1107/S0567740882009583. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  5. ^ G. Steyl (2006). "trans-Dichlorobis(triphenylphosphine)palladium(II) dichloromethane solvate". Acta Crystallogr. E. 62: m1324–m1325. doi:10.1107/S1600536806017521.
  6. ^ "trans-Dichloridobis(triphenylphosphine)palladium(II)". Acta Crystallogr. E. 64: m621. 2008. doi:10.1107/S1600536808008337. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  7. ^ "Crystal structure of a novel polymorph of trans-dichlorobis (triphenylphosphine) palladium (II) and its application as a novel, efficient and retrievable catalyst for the amination of aryl halides and stille cross-coupling reactions". J. Organomet. Chem. 841: 31–38. 2017. doi:10.1016/j.jorganchem.2016.10.002. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  8. ^ "One-Pot Procedure for the Synthesis of Unsymmetrical Diarylalkynes". J. Org. Chem. 75 (10): 3518–352. 2010. doi:10.1021/jo100460v. PMID 20420397. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  9. ^ "Development of a Scalable Process for CI-1034, an Endothelin Antagonist". Organic Process Research & Development. 8 (2): 201–212. 2004. doi:10.1021/op034104g. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  10. ^ "The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry". Chem. Rev. 107 (3): 874–922. 2007. doi:10.1021/cr050992x. PMID 17305399. {{cite journal}}: Cite uses deprecated parameter |authors= (help)