Chebyshev's sum inequality

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 2601:445:4001:273e:15d3:e3f6:e0aa:df12 (talk) at 18:02, 27 January 2016 (→‎Continuous version). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, Chebyshev's sum inequality, named after Pafnuty Chebyshev, states that if

and

then

Similarly, if

and

then

[1]

Proof

Consider the sum

The two sequences are non-increasing, therefore aj − ak and bj − bk have the same sign for any jk. Hence S ≥ 0.

Opening the brackets, we deduce:

whence

An alternative proof is simply obtained with the rearrangement inequality.

Continuous version

There is also a continuous version of Chebyshev's sum inequality:

If f and g are real-valued, integrable functions over [0,1], both non-increasing or both non-decreasing, then

with the inequality reversed if one is non-increasing and the other is non-decreasing.

Notes

  1. ^ Hardy, G. H.; Littlewood, J. E.; Pólya, G. (1988). Inequalities. Cambridge Mathematical Library. Cambridge: Cambridge University Press. ISBN 0-521-35880-9. MR 0944909.