Christie G. Enke

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by ChrisEnke (talk | contribs) at 03:42, 19 September 2018 (a few words in the awards list and some typos). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Christie G. Enke is a United States academic analytical chemist.

Chris Enke was born in Minneapolis, Minnesota in July 1933. His parents are Alvin Enke and Mae Nichols (both deceased). He graduated from Central High School in Minneapolis in 1951. He received the BA degree from Principia College in 1955 and the Ph.D. from the University of Illinois in 1959. His thesis, concerning the anodic formation of surface oxide films on platinum electrodes, was done under Herbert Laitinen. While at Illinois, he also worked with Howard Malmstadt to introduce a graduate lab/lecture course in the electronics of laboratory instrumentation. He is now Professors Emeriti of Chemistry at the University of New Mexico and Michigan State University, Prior to his move to the University of New Mexico in 1994, he was Instructor and Assistant Professor at Princeton (1959 – 1966) then Associate Professor and Professor at Michigan State University.

Christie G. Enke
BornJuly 8, 1933 (1933-07-08) (age 90)
Minneapolis, MN
NationalityUnited States
Alma materPrincipia College
University of Illinois
Known forElectrospray ionization
Mass Spectrometry
chemical instrumentation
Scientific career
FieldsChemist
InstitutionsPrinceton University
Michigan State University
University of New Mexico
Doctoral advisorHerbert August Laitinen
Doctoral students69
External videos
video icon Chris Enke, on the Triple Quadrupole breakthrough discovery: "It's a really interesting story because ... one man's noise is another man's answer.", Chemical Heritage Foundation

Education

Research and Teaching

  • Electroanalytical chemistry: Enke’s early research in electrochemistry centered on high-speed charge transfer kinetic studies[1]. He also pioneered the use of operational amplifiers in electroanalytical instrumentation and later, computer control. He is co-inventor of the bipolar pulse method for measuring electrolytic conductance[2].
  • Teaching electronics to scientists: Howard Malmstadt and Enke wrote the pioneering work, Electronics for Scientists[3]. Then Malmstadt, Stan Crouch and he wrote several more texts and lab books (9 in all) in the electronics of laboratory instrumentation. This same team developed and presented the hands-on ACS short course, “Electronics for Laboratory Instrumentation” beginning in 1979. Enke also wrote an introductory analytical chemistry text called, “The Art and Science of Chemical Analysi[4].
  • Mass spectrometry: Enke, his graduate student, Rick Yost, and a colleague, James Morrison, discovered low-energy collisional ion fragmentation in 1979[5] . Collisional dissociation in an RF-only quadrupole mass filter between two quadrupole mass analyzers resulted in the first triple quadrupole mass spectrometer[6]. Its low cost and unit resolution ushered in the technique now known as MS/MS. Enke continued research in mass spectrometry including developing a distributed microprocessor control system for the triple-quadrupole[7][8], a fast integrating detector system for time-of-flight mass spectrometry[9], development of a tandem time-of-flight instrument with photofragmentation of ions[10], the equilibrium partition theory of electrospray ionization[11], and the invention of distance-of-flight mass spectrometry[12].
  • Comprehensive analysis of complex mixtures: With Luc Nagels, Enke discovered that the concentrations of components in many natural complex mixtures have a log-normal distribution[13]. With this information, one can learn the number and concentrations of components that are below the detection limit.
  • Philosophy of Science, Epistemology: Enke has been studying the philosophy of science to find the means by which we can discern valid scientific laws and findings from conjecture and untestable hypotheses.

Awards

References

  1. ^ Daum, Peter H.; Enke, Christie G. "Electrochemical kinetics of the ferri-ferrocyanide couple on platinum". Analytical Chemistry. 41 (4): 653–656. doi:10.1021/ac60273a007. ISSN 0003-2700.
  2. ^ Johnson, Donald Edwin.; Enke, C. G. "Bipolar pulse technique for fast conductance measurements". Analytical Chemistry. 42 (3): 329–335. doi:10.1021/ac60285a015. ISSN 0003-2700.
  3. ^ Malmstadt, Howard; Enke, Christie (1962). Electronics for Scientists. New York: W. A. Benjamin.
  4. ^ 1933-, Enke, Christie G., (2001). The art and science of chemical analysis. Wiley. OCLC 681424927. {{cite book}}: |last= has numeric name (help)CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link)
  5. ^ Yost, R.A.; Enke, C.G.; McGilvery, D.C.; Smith, D.; Morrison, J.D. (June 1979). "High efficiency collision-induced dissociation in an RF-only quadrupole". International Journal of Mass Spectrometry and Ion Physics. 30 (2): 127–136. doi:10.1016/0020-7381(79)80090-x. ISSN 0020-7381.
  6. ^ Yost, R. A.; Enke, C. G. "Selected ion fragmentation with a tandem quadrupole mass spectrometer". Journal of the American Chemical Society. 100 (7): 2274–2275. doi:10.1021/ja00475a072. ISSN 0002-7863.
  7. ^ Newcome, B. H.; Enke, C. G. "Modular twin bus microprocessor system for laboratory automation". Review of Scientific Instruments. 55 (12): 2017–2022. doi:10.1063/1.1137705. ISSN 0034-6748.
  8. ^ Enke, C. G. (1982-02-12). "Computers in Scientific Instrumentation". Science. 215 (4534): 785–791. doi:10.1126/science.215.4534.785. ISSN 0036-8075.
  9. ^ Stults, J. T.; Myerholtz, C. A.; Newcome, B. H.; Enke, C. G.; Holland, J. F. "Data acquisition and instrument control system for ion flight time measurements in mass spectrometry". Review of Scientific Instruments. 56 (12): 2267–2273. doi:10.1063/1.1138362. ISSN 0034-6748.
  10. ^ Seeterlin, M. A.; Vlasak, P. R.; Beussman, D. J.; McLane, R. D.; Enke, C. G. "High Efficiency Photo-Induced Dissociation of Precursor Ions in a Tandem Time-of-Flight Mass Spectrometer". Journal of the American Society for Mass Spectrometry. 4 (9): 751–754. doi:10.1016/1044-0305(93)80055-4. ISSN 1044-0305.
  11. ^ Enke, Christie G. "A Predictive Model for Matrix and Analyte Effects in Electrospray Ionization of Singly-Charged Ionic Analytes". Analytical Chemistry. 69 (23): 4885–4893. doi:10.1021/ac970095w. ISSN 0003-2700.
  12. ^ Enke, Christie G.; Dobson, Gareth S. "Achievement of Energy Focus for Distance-of-Flight Mass Spectrometry with Constant Momentum Acceleration and an Ion Mirror". Analytical Chemistry. 79 (22): 8650–8661. doi:10.1021/ac070638u. ISSN 0003-2700.
  13. ^ Enke, Christie G.; Nagels, Luc J. "Undetected Components in Natural Mixtures: How Many? What Concentrations? Do They Account for Chemical Noise? What Is Needed to Detect Them?". Analytical Chemistry. 83 (7): 2539–2546. doi:10.1021/ac102818a. ISSN 0003-2700.
  14. ^ "Distinguished Contribution Past Recipients". American Society for Mass Spectrometry. Retrieved January 6, 2011.