Jump to content

Cubic form

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 206.248.163.153 (talk) at 20:15, 13 May 2018. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a cubic form is a homogeneous polynomial of degree 3, and a cubic hypersurface is the zero set of a cubic form. In the case of a cubic form in three variables, the zero set is a cubic plane curve.

In (Delone & Faddeev 1964), Boris Delone and Dmitry Faddeev showed that binary cubic forms with integer coefficients can be used to parametrize orders in cubic fields. Their work was generalized in (Gan, Gross & Savin 2002, §4) to include all cubic rings,[1][2] giving a discriminant-preserving bijection between orbits of a GL(2, Z)-action on the space of integral binary cubic forms and cubic rings up to isomorphism.

The classification of real cubic forms is linked to the classification of umbilical points of surfaces. The equivalence classes of such cubics form a three-dimensional real projective space and the subset of parabolic forms define a surface – the umbilic torus or umbilic bracelet.[3]

Examples

Notes

  1. ^ A cubic ring is a ring that is isomorphic to Z3 as a Z-module.
  2. ^ In fact, Pierre Deligne pointed out that the correspondence works over an arbitrary scheme.
  3. ^ Porteous, Ian R. (2001), Geometric Differentiation, For the Intelligence of Curves and Surfaces (2nd ed.), Cambridge University Press, p. 350, ISBN 978-0-521-00264-6

References