Jump to content

Cubohemioctahedron

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Rjwilmsi (talk | contribs) at 05:49, 16 May 2018 (References: Journal cites, added 1 DOI). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cubohemioctahedron
Type Uniform star polyhedron
Elements F = 10, E = 24
V = 12 (χ = −2)
Faces by sides 6{4}+4{6}
Coxeter diagram (double-covering)
Wythoff symbol 4/3 4 | 3 (double-covering)
Symmetry group Oh, [4,3], *432
Index references U15, C51, W78
Dual polyhedron Hexahemioctacron
Vertex figure
4.6.4/3.6
Bowers acronym Cho

In geometry, the cubohemioctahedron is a nonconvex uniform polyhedron, indexed as U15. Its vertex figure is a crossed quadrilateral.

It is given Wythoff symbol 4/3 4 | 3, although that is a double-covering of this figure.

A nonconvex polyhedron has intersecting faces which do not represent new edges or faces. In the picture vertices are marked by golden spheres, and edges by silver cylinders.

It is a hemipolyhedron with 4 hexagonal faces passing through the model center. The hexagons intersect each other and so only triangle portions of each are visible.

It shares the vertex arrangement and edge arrangement with the cuboctahedron (having the square faces in common), and with the octahemioctahedron (having the hexagonal faces in common).


Cuboctahedron

Cubohemioctahedron

Octahemioctahedron

Tetrahexagonal tiling

The cubohemioctahedron can be seen as a net on the hyperbolic tetrahexagonal tiling with vertex figure 4.6.4.6.


Hexahemioctacron

Hexahemioctacron
Type Star polyhedron
Face
Elements F = 12, E = 24
V = 10 (χ = −2)
Symmetry group Oh, [4,3], *432
Index references DU15
dual polyhedron Cubohemioctahedron

The hexahemioctacron is the dual of the cubohemioctahedron, and is one of nine dual hemipolyhedra. It appears visually indistinct from the octahemioctacron.

Since the cubohemioctahedron has four hexagonal faces passing through the model center, thus it is degenerate, and can be seen as having four vertices at infinity.

In Magnus Wenninger's Dual Models, they are represented with intersecting infinite prisms passing through the model center, cut off at a certain point that is convenient for the maker.

See also

  • Hemi-cube - The four vertices at infinity correspond directionally to the four vertices of this abstract polyhedron.

References

  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, doi:10.1017/CBO9780511569371, ISBN 978-0-521-54325-5, MR 0730208 (Page 101, Duals of the (nine) hemipolyhedra)