Jump to content

Cunningham chain

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 217.233.223.205 (talk) at 02:31, 11 November 2004 (External links: + de:). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a Cunningham chain is a certain sequence of prime numbers. Cunningham chains are named after mathematician A. J. C. Cunningham.

A Cunningham chain of the first kind is a sequence of prime numbers (p1,...,pn) such that for all 1 ≤ i < n, pi+1 = 2 pi + 1. (Hence each term of such a chain except the last one is a Sophie Germain prime). Similarly, a Cunningham chain of the second kind is a sequence of prime numbers (p1,...,pn) such that for all 1 ≤ i < n, pi+1 = 2 pi - 1.

Cunningham chains are also sometimes generalized to sequences of prime numbers (p1,...,pn) such that for all 1 ≤ i < n, pi+1 = api + b for fixed relatively prime integers a, b; the resulting chains are called generalized Cunningham chains.

A Cunningham chain is called complete if it cannot be further extended, i.e., if the next term in the chain would not be a prime number anymore.