DC bias

From Wikipedia, the free encyclopedia
  (Redirected from DC offset)
Jump to: navigation, search

When describing a periodic function in the time domain, the DC bias, DC component, DC offset, or DC coefficient is the mean value of the waveform. If the mean amplitude is zero, there is no DC offset. A waveform without a DC component is known as a DC-balanced or DC-free waveform.[1]

Origin[edit]

The term originated in electronics, where it refers to a direct current voltage. In contrast, various other non-DC frequencies are analogous to superimposed alternating current (AC) voltages or currents, hence called AC components or AC coefficients.

The concept has been extended to any representation of a waveform and to two-dimensional transformations like the discrete cosine transform used in JPEG.

Applications[edit]

In the design of electronic amplifier circuits, every active device has [[[biasing]] to set its operating point, the steady state current and voltage on the device when no signal is applied. In bipolar transistor biasing, for example, a network of resistors is used to apply a small amount of DC to the "base" (control terminal) of the transistor. The AC signal is applied at the same terminal and is amplified. The bias network is designed not to bypass too much of the applied ac signal. Similarly, amplifiers using field-effect transistors or vacuum tubes also have bias circuits. The operating point of an amplifier greatly affects its characteristics of distortion and efficiency; power amplifier classes are distinguished by the operating point set by the DC bias.

DC offset is usually undesirable when it causes clipping or other undesirable change in the operating point of an amplifier. An electrical DC bias will not pass through a transformer; thus a simple isolation transformer can be used to block or remove it, leaving only the AC component on the other side. In signal processing terms, DC offset can be reduced in real-time by a high-pass filter. For stored digital signals, subtracting the mean amplitude from each sample will remove the offset. Very low frequencies can look like DC bias but are called "slowly changing DC" or "baseline wander".

Communications systems[edit]

DC-balanced signals are used in communications systems to prevent bit errors when passing through circuits with capacitive coupling or transformers. Bit errors can occur when a series of 1's create a DC level that charges the capacitor of the high-pass filter used as the AC coupler, bringing the signal input down incorrectly to a 0-level. In order to avoid these kinds of bit errors, most line codes are designed to produce DC-balanced waveforms. The most common classes of DC balanced line codes are constant-weight codes and paired-disparity codes.

Audio[edit]

In audio recording, a DC offset is an undesirable characteristic of a recording sound. It occurs in the capturing of sound, before it reaches the recorder, and is normally caused by defective or low-quality equipment. The offset causes the center of the recording waveform to not be at 0, but at a higher or lower value, for example, +0.1 or -0.1. This can cause two main problems. Either the loudest parts of the signal will be clipped prematurely, since the base of the waveform has been moved up, or inaudible low-frequency distortion will occur. Low-frequency distortion may not be audible in the initial recording, but if the waveform is resampled to a compressed or lossy digital format, such as an MP3, those corruptions may become audible.[2]

A DC tape bias was used in early tape recorders to reduce distortion.

A DC bias is applied to the control grid of vacuum tubes in power amplifiers in order to regulate power.[3]

Frequency selection[edit]

On a voltage-controlled oscillator (VCO), such as in a radio transmitter, selection of the center frequency of the carrier wave is done with a DC bias. For frequency modulation (FM), the AC component is the baseband audio signal plus any subcarriers. Frequency-shift keying can be done solely by changing the DC bias.


See also[edit]

References[edit]

  1. ^ Kees Schouhamer Immink (March 1997). "Performance Assessment of DC-Free Multimode Codes" (PDF). IEEE Transactions on Communications. 45 (3): 293–299. doi:10.1109/26.558690. The dc-balanced or dc-free codes, as they are often called, have a long history and their application is certainly not confined to recording practice. 
  2. ^ "Archived copy". Archived from the original on 2016-08-23. Retrieved 2014-01-30. 
  3. ^ Randall Aiken. "What Is Biasing?". Aikenamps.com. Archived from the original on 2012-02-13. Retrieved 2012-08-16.