Jump to content

Daniel Bennequin

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by MainlyTwelve (talk | contribs) at 00:03, 3 June 2017 (Category:20th-century French mathematicians). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Daniel Bennequin (3 January 1952) is a French mathematician, known for the Thurston–Bennequin number (sometimes called the Bennequin number) introduced in his doctoral dissertation.[1]

Education and career

Bennequin completed his secondary education at Lycée Condorcet and then graduated from the École normale supérieure. He received his habilitation (Doctoral d'Etat) in 1982 from the University of Paris VII under Alain Chenciner with thesis Entrelacements et équations de Pfaff.[2][3] He was a professor at the University of Strasbourg before becoming a professor at the University of Paris VII (Institut Mathématique de Jussieu).

Bennequin's dissertation was a major contribution to contact geometry, in which he gave the first example of an exotic contact structure embedded in Euclidan 3-space. On the basis of their work in the 1980s Bennequin and Yakov Eliashberg might be considered the founders of contact topology.[4] Bennequin also works on motion planning.[5] He was a member of Bourbaki.[6]

Selected publications

  • L'instanton gordien, d'après P. B. Kronheimer et T. S. Mrowka, Séminaire Bourbaki Nr. 770, 1992/93, numdam
  • Monopôles de Seiberg-Witten et conjecture de Thom, d'après Kronheimer, Mrowka et Witten, Séminaire Bourbaki Nr. 807, 1995/96, numdam
  • Caustique mystique, d'après Arnold et. al., Séminaire Bourbaki, Nr. 634, 1984/85, numdam
  • Problèmes elliptiques, surfaces de Riemann et structures symplectiques, d'après M. Gromov, Séminaire Bourbaki, Nr. 657, 1985/86, numdam
  • Topologie symplectique, convexité holomorphe et structures de contact, d'après Y. Eliashberg, D. Mc Duff et al, Séminaire Boubaki, Nr. 725, 1989/90, numdam
  • Dualités de champs et de cordes, d’après t'Hooft, Polyakov, Witten et al., Séminaire Bourbaki, Nr. 899, 2001/02, numdam
  • Les Bords des revêtements ramifiés des surfaces, ENS 1977

References

  1. ^ Maximal Thurston-Bennequin number - Knot Atlas
  2. ^ "Entrelacements et équations de Pfaff". Astérisque. 107/108: 87–161. 1983. (Bennequin's doctoral dissertation)
  3. ^ Daniel Bennequin at the Mathematics Genealogy Project
  4. ^ Adrien Douady: Noeuds et structures de contact en dimension 3, d'après Daniel Bennequin, Seminaire Bourbaki 604, 1982/83, numdam
  5. ^ Bennequin, Daniel; Fuchs, Ronit; Berthoz, Alain; Flash, Tamar (10 July 2009). "Movement Timing and Invariance Arise from Several Geometries". PLoS Comput Biol. 5 (7). doi:10.1371/journal.pcbi.1000426.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ Mashaal, Maurice (2006), Bourbaki: a secret society of mathematicians, American Mathematical Society, p. 17, ISBN 978-0-8218-3967-6