Digital differential analyzer (graphics algorithm)
In computer graphics, a digital differential analyzer (DDA) is hardware or software used for linear interpolation of variables over an interval between start and end point. DDAs are used for rasterization of lines, triangles and polygons. In its simplest implementation, the DDA algorithm interpolates values in interval by computing for each xi the equations xi = xi−1+1/m, yi = yi−1 + m, where Δx = xend − xstart and Δy = yend − ystart and m = Δy/Δx
Performance
The DDA method can be implemented using floating-point or integer arithmetic. The native floating-point implementation requires one addition and one rounding operation per interpolated value (e.g. coordinate x, y, depth, color component etc.) and output result. This process is only efficient when an FPU with fast add and rounding operation will be available.
The fixed-point integer operation requires two additions per output cycle, and in case of fractional part overflow, one additional increment and subtraction. The probability of fractional part overflows is proportional to the ratio m of the interpolated start/end values.
DDAs are well suited for hardware implementation and can be pipelined for maximized throughput.
This slope can be expressed in DDA as
where m represents the slope of the line and c is the y intercept. In fact any two consecutive point(x,y) lying on this line segment should satisfy the equation.
Similar calculations are carried out to determine pixel positions along a line with negative slope. Thus, if the absolute value of the slope is less than 1, we set dx=1 if i.e. the starting extreme point is at the left.
See also
- Bresenham's line algorithm is an algorithm for line rendering.
- Xiaolin Wu's line algorithm is an algorithm for line anti-aliasing
References
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (June 2011) |
- Alan Watt: 3D Computer Graphics, 3rd edition 2000, p. 184 (Rasterizing edges). ISBN 0-201-39855-9