Jump to content

Dini criterion

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 2001:861:3f42:1b60:15a6:bd38:b9da:b589 (talk) at 13:15, 25 March 2023. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, Dini's criterion is a condition for the pointwise convergence of Fourier series, introduced by Ulisse Dini (1880).

Statement

Dini's criterion states that if a periodic function f has the property that is locally integrable near 0, then the Fourier series of f converges to 0 at .

Dini's criterion is in some sense as strong as possible: if g(t) is a positive continuous function such that g(t)/t is not locally integrable near 0, there is a continuous function f with |f(t)| ≤ g(t) whose Fourier series does not converge at 0.

References

  • Dini, Ulisse (1880), Serie di Fourier e altre rappresentazioni analitiche delle funzioni di una variabile reale, Pisa: Nistri, ISBN 978-1429704083
  • Golubov, B. I. (2001) [1994], "Dini criterion", Encyclopedia of Mathematics, EMS Press