Dinostratus' theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 14.97.96.24 (talk) at 21:20, 29 July 2017. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In geometry, Dinostratus' theorem describes a property of Hippias' trisectrix, that allows for the squaring the circle if the trisectrix can be used in addition to straightedge and compass. The theorem is named after the Greek mathematician Dinostratus who proved it around 350 BC when he attempted to square the circle himself.

The theorem states that Hippias' trisectrix divides one of the sides of its associated square in a ratio of .

Arbitrary points on Hippias' trisectrix itself however cannot be constructed by circle and compass alone but only a dense subset. In particular it is not possible to construct the exact point where the trisectrix meets the edge of the square. For this reason Dinostratus' approach is not considered a "real" solution of the classical problem of squaring the circle.

References