Jump to content

Disulfur

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Plasmic Physics (talk | contribs) at 23:30, 26 May 2013 (removed Category:Sulfur; added Category:Sulfur forms using HotCat). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Disulfur
Ball and stick model of disulfur molecule
Names
IUPAC name
Disulfur
Other names
Diatomic sulfur

Sulfur

Sulfur dimer
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
753
  • InChI=1S/S2/c1-2 checkY
    Key: MAHNFPMIPQKPPI-UHFFFAOYSA-N checkY
  • [S][S]
Properties
S2
Molar mass 64.12 g·mol−1
0 D
Thermochemistry
32.51 kJ K−1 mol−1
228.17 kJ K−1 mol−1
128.60 kJ mol−1
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Disulfur is the diatomic molecule with the formula S2.[1] It is analogous to the dioxygen molecule but rarely occurs at room temperature. This violet gas is commonly generated by heating sulfur above 720 °C and comprises 99% of the vapor at low pressure (1 mm Hg) at 530 °C. S2 is one of the minor components of the atmosphere of Io, which is predominantly composed of SO2.[2] Diatomic molecules are common containing C, O, N, and F, but for heavier elements they are often only stable at high temperatures.

Production

Disulfur results when an atmosphere of COS is irradiated with UV light using a mercury photosensitizer or when CS2, H2S2, S2Cl2 or C2H4S are photolyzed. Singlet S2 is also formed when sulfur compounds such as H2S, PSF3 or COS are photolyzed. S2 can be generated by heating various organosulfur precursors.[3]

Properties

S2 exists in the triplet state (is a diradical, with two unpaired electrons) like O2 and SO. It has the S-S double bond length of 189 pm, much shorter than the S-S single bonds in S8, which are 206 pm long. In its Raman spectrum, the S-S vibrational band is observed at 715 cm−1.[4] The corresponding vibrational band of O-O is found at 1122 cm−1. The S-S bond energy is 265 kJ/mol compared to 498 kJ/mol for O2.

Sulfur has a large number of allotropes, perhaps as many as thirty. Their specific properties are distinguishable by various types of spectroscopy. The only stable form of sulfur at normal conditions is S8.[5]

References

  1. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/b12110, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/b12110 instead.
  2. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/s11214-005-1957-z, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/s11214-005-1957-z instead.
  3. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/S0040-4020(97)00555-3, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/S0040-4020(97)00555-3 instead.
  4. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/b13181, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/b13181 instead.
  5. ^ A. F. Holleman, N. Wiberg. Inorganic Chemistry. Academic Press; Berlin ; New York : De Gruyter, 2001.ISBN 0-12-352651-5.