In algebraic geometry , the Quot scheme is a scheme parametrizing sheaves on a projective scheme . More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X , then there is a scheme
Quot
F
(
X
)
{\displaystyle \operatorname {Quot} _{F}(X)}
whose set of T -points
Quot
F
(
X
)
(
T
)
=
Mor
S
(
T
,
Quot
F
(
X
)
)
{\displaystyle \operatorname {Quot} _{F}(X)(T)=\operatorname {Mor} _{S}(T,\operatorname {Quot} _{F}(X))}
is the set of isomorphism classes of the quotients of
F
×
S
T
{\displaystyle F\times _{S}T}
that are flat over T . The notion was introduced by Alexander Grothendieck .[ 1]
It is typically used to construct another scheme parametrizing geometric objects that are of interest such as a Hilbert scheme . (In fact, taking F to be the structure sheaf
O
X
{\displaystyle {\mathcal {O}}_{X}}
gives a Hilbert scheme.)
For a scheme of finite type
X
→
S
{\displaystyle X\to S}
over a Noetherian base scheme
S
{\displaystyle S}
, and a coherent sheaf
E
∈
Coh
(
X
)
{\displaystyle {\mathcal {E}}\in {\text{Coh}}(X)}
, there is a functor[ 2] [ 3]
Q
u
o
t
E
/
X
/
S
:
(
S
c
h
/
S
)
o
p
→
Sets
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}:(Sch/S)^{op}\to {\text{Sets}}}
sending
T
→
S
{\displaystyle T\to S}
to
Q
u
o
t
E
/
X
/
S
(
T
)
=
{
(
F
,
q
)
:
F
∈
QCoh
(
X
T
)
F
finitely presented over
X
T
Supp
(
F
)
is proper over
T
F
is flat over
T
q
:
E
T
→
F
surjective
}
/
∼
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}(T)=\left\{({\mathcal {F}},q):{\begin{matrix}{\mathcal {F}}\in {\text{QCoh}}(X_{T})\\{\mathcal {F}}\ {\text{finitely presented over}}\ X_{T}\\{\text{Supp}}({\mathcal {F}}){\text{ is proper over }}T\\{\mathcal {F}}{\text{ is flat over }}T\\q:{\mathcal {E}}_{T}\to {\mathcal {F}}{\text{ surjective}}\end{matrix}}\right\}/\sim }
where
X
T
=
X
×
S
T
{\displaystyle X_{T}=X\times _{S}T}
and
E
T
=
p
r
X
∗
E
{\displaystyle {\mathcal {E}}_{T}=pr_{X}^{*}{\mathcal {E}}}
under the projection
p
r
X
:
X
T
→
X
{\displaystyle pr_{X}:X_{T}\to X}
. There is an equivalence relation given by
(
F
,
q
)
∼
(
F
′
,
q
′
)
{\displaystyle ({\mathcal {F}},q)\sim ({\mathcal {F}}',q')}
if there is an isomorphism
F
→
F
″
{\displaystyle {\mathcal {F}}\to {\mathcal {F}}''}
commuting with the two projections
q
,
q
′
{\displaystyle q,q'}
; that is,
E
T
→
q
F
↓
↓
E
T
→
q
′
F
′
{\displaystyle {\begin{matrix}{\mathcal {E}}_{T}&{\xrightarrow {q}}&{\mathcal {F}}\\\downarrow {}&&\downarrow \\{\mathcal {E}}_{T}&{\xrightarrow {q'}}&{\mathcal {F}}'\end{matrix}}}
is a commutative diagram for
E
T
→
i
d
E
T
{\displaystyle {\mathcal {E}}_{T}{\xrightarrow {id}}{\mathcal {E}}_{T}}
. Alternatively, there is an equivalent condition of holding
ker
(
q
)
=
ker
(
q
′
)
{\displaystyle {\text{ker}}(q)={\text{ker}}(q')}
. This is called the quot functor which has a natural stratification into a disjoint union of subfunctors, each of which is represented by a projective
S
{\displaystyle S}
-scheme called the quot scheme associated to a Hilbert polynomial
Φ
{\displaystyle \Phi }
.
For a relatively very ample line bundle
L
∈
Pic
(
X
)
{\displaystyle {\mathcal {L}}\in {\text{Pic}}(X)}
[ 4] and any closed point
s
∈
S
{\displaystyle s\in S}
there is a function
Φ
F
:
N
→
N
{\displaystyle \Phi _{\mathcal {F}}:\mathbb {N} \to \mathbb {N} }
sending
m
↦
χ
(
F
s
(
m
)
)
=
∑
i
=
0
n
(
−
1
)
i
dim
κ
(
s
)
H
i
(
X
,
F
s
⊗
L
s
⊗
m
)
{\displaystyle m\mapsto \chi ({\mathcal {F}}_{s}(m))=\sum _{i=0}^{n}(-1)^{i}{\text{dim}}_{\kappa (s)}H^{i}(X,{\mathcal {F}}_{s}\otimes {\mathcal {L}}_{s}^{\otimes m})}
which is a polynomial for
m
>>
0
{\displaystyle m>>0}
. This is called the Hilbert polynomial which gives a natural stratification of the quot functor. Again, for
L
{\displaystyle {\mathcal {L}}}
fixed there is a disjoint union of subfunctors
Q
u
o
t
E
/
X
/
S
=
∐
Φ
∈
Q
[
t
]
Q
u
o
t
E
/
X
/
S
Φ
,
L
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}=\coprod _{\Phi \in \mathbb {Q} [t]}{\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{\Phi ,{\mathcal {L}}}}
where
Q
u
o
t
E
/
X
/
S
Φ
,
L
(
T
)
=
{
(
F
,
q
)
∈
Q
u
o
t
E
/
X
/
S
(
T
)
:
Φ
F
=
Φ
}
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{\Phi ,{\mathcal {L}}}(T)=\left\{({\mathcal {F}},q)\in {\mathcal {Quot}}_{{\mathcal {E}}/X/S}(T):\Phi _{\mathcal {F}}=\Phi \right\}}
The Hilbert polynomial
Φ
F
{\displaystyle \Phi _{\mathcal {F}}}
is the Hilbert polynomial of
F
t
{\displaystyle {\mathcal {F}}_{t}}
for closed points
t
∈
T
{\displaystyle t\in T}
. Note the Hilbert polynomial is independent of the choice of very ample line bundle
L
{\displaystyle {\mathcal {L}}}
.
Grothendieck's existence theorem[ edit ]
It is a theorem of Grothendieck's that the functors
Q
u
o
t
E
/
X
/
S
Φ
,
L
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{\Phi ,{\mathcal {L}}}}
are all representable by projective schemes
Quot
E
/
X
/
S
Φ
{\displaystyle {\text{Quot}}_{{\mathcal {E}}/X/S}^{\Phi }}
over
S
{\displaystyle S}
.
The Grassmannian
G
(
n
,
k
)
{\displaystyle G(n,k)}
of
k
{\displaystyle k}
-planes in an
n
{\displaystyle n}
-dimensional vector space has a universal quotient
O
G
(
n
,
k
)
⊕
k
→
U
{\displaystyle {\mathcal {O}}_{G(n,k)}^{\oplus k}\to {\mathcal {U}}}
where
U
x
{\displaystyle {\mathcal {U}}_{x}}
is the
k
{\displaystyle k}
-plane represented by
x
∈
G
(
n
,
k
)
{\displaystyle x\in G(n,k)}
. Since
U
{\displaystyle {\mathcal {U}}}
is locally free and at every point it represents a
k
{\displaystyle k}
-plane, it has the constant Hilbert polynomial
Φ
(
λ
)
=
k
{\displaystyle \Phi (\lambda )=k}
. This shows
G
(
n
,
k
)
{\displaystyle G(n,k)}
represents the quot functor
Q
u
o
t
O
G
(
n
,
k
)
⊕
(
n
)
/
Spec
(
Z
)
/
Spec
(
Z
)
k
,
O
G
(
n
,
k
)
{\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}_{G(n,k)}^{\oplus (n)}/{\text{Spec}}(\mathbb {Z} )/{\text{Spec}}(\mathbb {Z} )}^{k,{\mathcal {O}}_{G(n,k)}}}
As a special case, we can construct the project space
P
(
E
)
{\displaystyle \mathbb {P} ({\mathcal {E}})}
as the quot scheme
Q
u
o
t
E
/
X
/
S
1
,
O
X
{\displaystyle {\mathcal {Quot}}_{{\mathcal {E}}/X/S}^{1,{\mathcal {O}}_{X}}}
for a sheaf
E
{\displaystyle {\mathcal {E}}}
on an
S
{\displaystyle S}
-scheme
X
{\displaystyle X}
.
The Hilbert scheme is a special example of the quot scheme. Notice a subscheme
Z
⊂
X
{\displaystyle Z\subset X}
can be given as a projection
O
X
→
O
Z
{\displaystyle {\mathcal {O}}_{X}\to {\mathcal {O}}_{Z}}
and a flat family of such projections parametrized by a scheme
T
∈
S
c
h
/
S
{\displaystyle T\in Sch/S}
can be given by
O
X
T
→
F
{\displaystyle {\mathcal {O}}_{X_{T}}\to {\mathcal {F}}}
Since there is a hilbert polynomial associated to
Z
{\displaystyle Z}
, denoted
Φ
Z
{\displaystyle \Phi _{Z}}
, there is an isomorphism of schemes
Quot
O
X
/
X
/
S
Φ
Z
≅
Hilb
X
/
S
Φ
Z
{\displaystyle {\text{Quot}}_{{\mathcal {O}}_{X}/X/S}^{\Phi _{Z}}\cong {\text{Hilb}}_{X/S}^{\Phi _{Z}}}
Example of a parameterization [ edit ]
If
X
=
P
k
n
{\displaystyle X=\mathbb {P} _{k}^{n}}
and
S
=
Spec
(
k
)
{\displaystyle S={\text{Spec}}(k)}
for an algebraically closed field, then a non-zero section
s
∈
Γ
(
O
(
d
)
)
{\displaystyle s\in \Gamma ({\mathcal {O}}(d))}
has vanishing locus
Z
=
Z
(
s
)
{\displaystyle Z=Z(s)}
with Hilbert polynomial
Φ
Z
(
λ
)
=
(
n
+
λ
n
)
−
(
n
−
d
+
λ
n
)
{\displaystyle \Phi _{Z}(\lambda )={\binom {n+\lambda }{n}}-{\binom {n-d+\lambda }{n}}}
Then, there is a surjection
O
→
O
Z
{\displaystyle {\mathcal {O}}\to {\mathcal {O}}_{Z}}
with kernel
O
(
−
d
)
{\displaystyle {\mathcal {O}}(-d)}
. Since
s
{\displaystyle s}
was an arbitrary non-zero section, and the vanishing locus of
a
⋅
s
{\displaystyle a\cdot s}
for
a
∈
k
∗
{\displaystyle a\in k^{*}}
gives the same vanishing locus, the scheme
Q
=
P
(
Γ
(
O
(
d
)
)
)
{\displaystyle Q=\mathbb {P} (\Gamma ({\mathcal {O}}(d)))}
gives a natural parameterization of all such sections. There is a sheaf
E
{\displaystyle {\mathcal {E}}}
on
X
×
Q
{\displaystyle X\times Q}
such that for any
[
s
]
∈
Q
{\displaystyle [s]\in Q}
, there is an associated subscheme
Z
⊂
X
{\displaystyle Z\subset X}
and surjection
O
→
O
Z
{\displaystyle {\mathcal {O}}\to {\mathcal {O}}_{Z}}
. This construction represents the quot functor
Q
u
o
t
O
/
P
n
/
Spec
(
k
)
Φ
Z
{\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}/\mathbb {P} ^{n}/{\text{Spec}}(k)}^{\Phi _{Z}}}
Quadrics in the projective plane [ edit ]
If
X
=
P
2
{\displaystyle X=\mathbb {P} ^{2}}
and
s
∈
Γ
(
O
(
2
)
)
{\displaystyle s\in \Gamma ({\mathcal {O}}(2))}
, the Hilbert polynomial is
Φ
Z
(
λ
)
=
(
2
+
λ
2
)
−
(
2
−
2
+
λ
2
)
=
(
λ
+
2
)
(
λ
+
1
)
2
−
λ
(
λ
−
1
)
2
=
λ
2
+
3
λ
+
2
2
−
λ
2
−
λ
2
=
2
λ
+
2
2
=
λ
+
1
{\displaystyle {\begin{aligned}\Phi _{Z}(\lambda )&={\binom {2+\lambda }{2}}-{\binom {2-2+\lambda }{2}}\\&={\frac {(\lambda +2)(\lambda +1)}{2}}-{\frac {\lambda (\lambda -1)}{2}}\\&={\frac {\lambda ^{2}+3\lambda +2}{2}}-{\frac {\lambda ^{2}-\lambda }{2}}\\&={\frac {2\lambda +2}{2}}\\&=\lambda +1\end{aligned}}}
and
Quot
O
/
P
2
/
Spec
(
k
)
λ
+
1
≅
P
(
Γ
(
O
(
2
)
)
)
≅
P
5
{\displaystyle {\text{Quot}}_{{\mathcal {O}}/\mathbb {P} ^{2}/{\text{Spec}}(k)}^{\lambda +1}\cong \mathbb {P} (\Gamma ({\mathcal {O}}(2)))\cong \mathbb {P} ^{5}}
The universal quotient over
P
5
×
P
2
{\displaystyle \mathbb {P} ^{5}\times \mathbb {P} ^{2}}
is given by
O
→
U
{\displaystyle {\mathcal {O}}\to {\mathcal {U}}}
where the fiber over a point
[
Z
]
∈
Quot
O
/
P
2
/
Spec
(
k
)
λ
+
1
{\displaystyle [Z]\in {\text{Quot}}_{{\mathcal {O}}/\mathbb {P} ^{2}/{\text{Spec}}(k)}^{\lambda +1}}
gives the projective morphism
O
→
O
Z
{\displaystyle {\mathcal {O}}\to {\mathcal {O}}_{Z}}
For example, if
[
Z
]
=
[
a
0
:
a
1
:
a
2
:
a
3
:
a
4
:
a
5
]
{\displaystyle [Z]=[a_{0}:a_{1}:a_{2}:a_{3}:a_{4}:a_{5}]}
represents the coefficients of
f
=
a
0
x
2
+
a
1
x
y
+
a
2
x
z
+
a
3
y
2
+
a
4
y
z
+
a
5
z
2
{\displaystyle f=a_{0}x^{2}+a_{1}xy+a_{2}xz+a_{3}y^{2}+a_{4}yz+a_{5}z^{2}}
then the universal quotient over
[
Z
]
{\displaystyle [Z]}
gives the short exact sequence
0
→
O
(
−
2
)
→
f
O
→
O
Z
→
0
{\displaystyle 0\to {\mathcal {O}}(-2){\xrightarrow {f}}{\mathcal {O}}\to {\mathcal {O}}_{Z}\to 0}
Semistable vector bundles on a curve [ edit ]
Semistable vector bundles on a curve
C
{\displaystyle C}
of genus
g
{\displaystyle g}
can equivalently be described as locally free sheaves of finite rank. Such locally free sheaves
F
{\displaystyle {\mathcal {F}}}
of rank
n
{\displaystyle n}
and degree
d
{\displaystyle d}
have the properties[ 5]
H
1
(
C
,
F
)
=
0
{\displaystyle H^{1}(C,{\mathcal {F}})=0}
F
{\displaystyle {\mathcal {F}}}
is generated by global sections
for
d
>
n
(
2
g
−
1
)
{\displaystyle d>n(2g-1)}
. This implies there is a surjection
H
0
(
C
,
F
)
⊗
O
C
≅
O
C
⊕
N
→
F
{\displaystyle H^{0}(C,{\mathcal {F}})\otimes {\mathcal {O}}_{C}\cong {\mathcal {O}}_{C}^{\oplus N}\to {\mathcal {F}}}
Then, the quot scheme
Q
u
o
t
O
C
⊕
N
/
C
/
Z
{\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}_{C}^{\oplus N}/{\mathcal {C}}/\mathbb {Z} }}
parametrizes all such surjections. Using the Grothendieck–Riemann–Roch theorem the dimension
N
{\displaystyle N}
is equal to
χ
(
F
)
=
d
+
n
(
1
−
g
)
{\displaystyle \chi ({\mathcal {F}})=d+n(1-g)}
For a fixed line bundle
L
{\displaystyle {\mathcal {L}}}
of degree
1
{\displaystyle 1}
there is a twisting
F
(
m
)
=
F
⊗
L
⊗
m
{\displaystyle {\mathcal {F}}(m)={\mathcal {F}}\otimes {\mathcal {L}}^{\otimes m}}
, shifting the degree by
n
m
{\displaystyle nm}
, so
χ
(
F
(
m
)
)
=
m
n
+
d
+
n
(
1
−
g
)
{\displaystyle \chi ({\mathcal {F}}(m))=mn+d+n(1-g)}
[ 5]
giving the Hilbert polynomial
Φ
F
(
λ
)
=
n
λ
+
d
+
n
(
1
−
g
)
{\displaystyle \Phi _{\mathcal {F}}(\lambda )=n\lambda +d+n(1-g)}
Then, the locus of semi-stable vector bundles is contained in
Q
u
o
t
O
C
⊕
N
/
C
/
Z
Φ
F
,
L
{\displaystyle {\mathcal {Quot}}_{{\mathcal {O}}_{C}^{\oplus N}/{\mathcal {C}}/\mathbb {Z} }^{\Phi _{\mathcal {F}},{\mathcal {L}}}}
which can be used to construct the moduli space
M
C
(
n
,
d
)
{\displaystyle {\mathcal {M}}_{C}(n,d)}
of semistable vector bundles using a GIT quotient .[ 5]
^ Grothendieck, Alexander. Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert. Séminaire Bourbaki : années 1960/61, exposés 205-222, Séminaire Bourbaki, no. 6 (1961), Talk no. 221, p. 249-276
^ Nitsure, Nitin (2005). "Construction of Hilbert and Quot Schemes". Fundamental algebraic geometry: Grothendieck’s FGA explained . Mathematical Surveys and Monographs. Vol. 123. American Mathematical Society. pp. 105–137. arXiv :math/0504590 . ISBN 978-0-8218-4245-4 .
^ Altman, Allen B.; Kleiman, Steven L. (1980). "Compactifying the Picard scheme" . Advances in Mathematics . 35 (1): 50–112. doi :10.1016/0001-8708(80)90043-2 . ISSN 0001-8708 .
^ Meaning a basis
s
i
{\displaystyle s_{i}}
for the global sections
Γ
(
X
,
L
)
{\displaystyle \Gamma (X,{\mathcal {L}})}
defines an embedding
s
:
X
→
P
S
N
{\displaystyle \mathbb {s} :X\to \mathbb {P} _{S}^{N}}
for
N
=
dim
(
Γ
(
X
,
L
)
)
{\displaystyle N={\text{dim}}(\Gamma (X,{\mathcal {L}}))}
^ a b c Hoskins, Victoria. "Moduli Problems and Geometric Invariant Theory" (PDF) . pp. 68, 74–85. Archived (PDF) from the original on 1 March 2020.