Jump to content

Duplication and elimination matrices

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Offsure (talk | contribs) at 11:45, 1 December 2016 (The elimination matrix is not unique.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.

Duplication matrix

The duplication matrix Dn is the unique n2 × n(n+1)/2 matrix which, for any n × n symmetric matrix A, transforms vech(A) into vec(A):

Dn vech(A) = vec(A).

For the 2×2 symmetric matrix A = , this transformation reads

Elimination matrix

An elimination matrix Ln is a n(n+1)/2 × n2 matrix which, for any n × n matrix A, transforms vec(A) into vech(A):

Ln vec(A) = vech(A). [1]

For the 2×2 matrix A = , one choice for this transformation is given by

.

Notes

  1. ^ Magnus & Neudecker (1980), Definition 3.1

References

  • Magnus, Jan R.; Neudecker, Heinz (1980), "The elimination matrix: some lemmas and applications", Society for Industrial and Applied Mathematics. Journal on Algebraic and Discrete Methods, 1 (4): 422–449, doi:10.1137/0601049, ISSN 0196-5212.
  • Jan R. Magnus and Heinz Neudecker (1988), Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley. ISBN 0-471-98633-X.
  • Jan R. Magnus (1988), Linear Structures, Oxford University Press. ISBN 0-19-520655-X