Electride
An electride is an ionic compound in which an electron is the anion.[1] Solutions of alkali metals in ammonia are electride salts.[2] In the case of sodium, these blue solutions consist of [Na(NH3)6]+ and solvated electrons:
- Na + 6 NH3 → [Na(NH3)6]+,e−
The cation [Na(NH3)6]+ is an octahedral coordination complex.
Solid salts
Addition of a complexant like crown ether or 2,2,2-cryptand to a solution of [Na(NH3)6]+e− affords [Na(crown ether)]+e− or [Na(2,2,2-crypt)]+e−. Evaporation of these solutions yields a blue-black paramagnetic salt with the formula [Na(2,2,2-crypt)]+e−.
Most solid electride salts decompose above 240 K, although [Ca24Al28O64]4+(e−)4 is stable at room temperature.[3] In these salts, the electron is delocalized between the cations. Electrides are paramagnetic and Mott insulators. Properties of these salts have been analyzed[4]
Reactions
Solutions of electride salts are powerful reducing agents, as demonstrated by their use in the Birch reduction. Evaporation of these blue solutions affords a mirror of Na. Such solutions slowly lose their colour as the electrons reduce ammonia:
- [Na(NH3)6]+e− + NH3 → NaNH2 + H2
High pressure elements
Theoretical evidence supports electride behaviour in insulating high-pressure forms of potassium, sodium, and lithium. Here the isolated electron is stabilized by efficient packing which reduces enthalpy under external pressure. The electride is identified by a maximum in the electron localization function which distinguishes the electride from pressure-induced metallization. Electride phases are typically semiconducting or have very low conductivity.[5][6][7]
References
- ^ Dye, J. L. (2003). "Electrons as Anions". Science. 301 (5633): 607–608. doi:10.1126/science.1088103. PMID 12893933.
- ^ Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5
- ^ Buchammagari, H.; et al. (2007). "Room Temperature-Stable Electride as a Synthetic Organic Reagent: Application to Pinacol Coupling Reaction in Aqueous Media". Org. Lett. 9 (21). ACS Publications: 4287–4289. doi:10.1021/ol701885p. PMID 17854199.
- ^ Wagner, M. J.; Huang, R. H.; Eglin, J. L.; Dye, J. L. Nature, 1994,368, 726-729.
- ^ Marques M.; et al. (2009). "Potassium under Pressure: A Pseudobinary Ionic Compound". Physical Review Letters. 103 (11): 115501. Bibcode:2009PhRvL.103k5501M. doi:10.1103/PhysRevLett.103.115501.
- ^ Gatti M.; et al. (2010). "Sodium: A Charge-Transfer Insulator at High Pressures". Physical Review Letters. 104 (11): 216404. arXiv:1003.0540. Bibcode:2010PhRvL.104u6404G. doi:10.1103/PhysRevLett.104.216404.
- ^ Marques M.; et al. (2011). "Crystal Structures of Dense Lithium: A Metal-Semiconductor-Metal Transition". Physical Review Letters. 106 (9): 095502. Bibcode:2011PhRvL.106i5502M. doi:10.1103/PhysRevLett.106.095502.
Further reading
- J. L. Dye, M. J. Wagner, G. Overney, R. H. Huang, T. F. Nagy, and D. Tománek (1996). "Cavities and Channels in Electrides" (reprint). J. Am. Chem. Soc. 118 (31): 7329. doi:10.1021/ja960548z.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - JCTC