Endocrinology of reproduction: Difference between revisions
Appearance
Content deleted Content added
No edit summary |
←Blanked the page |
||
Line 1: | Line 1: | ||
Hormonal regulation occurs at every stage of development. A milieu of hormones simultaneously affect development of the fetus during [[embryogenesis]] and the mother, perhaps most notably [[human chorionic gonadotropin]] (hCG) and [[progesterone]] (P4). |
|||
== Embryogenesis == |
|||
[[Human chorionic gonadotropin]] (hCG), [[progesterone]], [[17β-estradiol]], [[endorphins]] and [[gonadotropin-releasing hormone]] (GnRH) synthesis are rapidly upregulated following fertilization of the ovum <ref>Zhuang, L., & Li, R. (1991). Study on reproductive endocrinology of human placenta (II): hormone secreting activity of cytotrophoblast cells. Sci China B., 34, 1092–1097.)</ref><ref>Gerami-Naini, B. et al (2004). Trophoblast differentiation in embryoid bodies derived from human embryonic stem cells. Endocrinology, 145, 1517–1524.</ref><ref>Pidoux, G. et al (2007). Biochemical characterization and modulation of LH/CG-receptor during human trophoblast differentiation. Journal of Cell Physiology, 212, 26–35.</ref>. |
|||
During early embryonic development, [[paracrine]]/[[juxtacrine]] signaling of hCG induces [[blastulation]] and [[neurulation]]. An in vitro model of early human embryogenesis ([[human embryonic stem cells]] (hESCs)) has demonstrated that hCG promotes cell proliferation via the LH/hCG receptor (LHCGR). hCG signaling upregulates the expression of [[steroidogenic acute regulatory protein]] (StAR)-mediated cholesterol transport and the synthesis of progesterone in hESC. The production of progesterone at this time induces embryroid body (akin to blastulation) and rosettes (akin to neurulation) formation in vitro. Progesterone induces the differentiation of [[pluripotent]] hESC to [[neural stem cells]] <ref name=Gallego2009>Gallego, M. et al (2009). Opioid and progesterone signaling is obligatory for early human embryogenesis. Stem Cells Development, 18, 737–740.</ref><ref name=Gallego2010>Gallego, M. et al (2010). The pregnancy hormones human chorionic gonadotropin and progesterone induce human embryonic stem cell proliferation and differentiation into neuroectodermal rosettes. Stem Cell Research & Therapy, 1, 1-13</ref>. |
|||
Suppression of P4 signaling following withdrawal of progesterone, or treatment with the progesterone receptor antagonist RU-486 ([[mifepristone]]), inhibits the differentiation of hESC colonies into embryoid bodies ([[blastulation]]) or [[rosettes]] ([[neurulation]]). RU-486, a drug commonly used to terminate pregnancy in its early stages, acts not only to abort the embryo, but also to inhibit normal embryonic development <ref name=Gallego2009/><ref name=Gallego2010/>. |
|||
== Influence of Maternal Hormones == |
|||
[[Pregnancy]]-associated [[hormones]] such as hCG and sex steroids regulate numerous biological processes in the maternal system prior to and during pregnancy. |
|||
=== Maintenance of the endometrial lining === |
|||
The early embryo has 1–2 weeks in order to produce sufficient hCG in order to stabilize the endometrial lining to allow for blastocyst attachment. The dramatic increase in trophoblastic and corpus luteal hCG synthesis signals both blastocyst <ref name =Gallego2010/> and corpus luteal <ref>Carr, B., MacDonald, P., Simpson, E. (1982). The role of lipoproteins in the regulation of progesterone secretion by the human corpus luteum. Fertil Steril, 38, 303-311</ref> production of P4, crucial for the maintenance of the [[endometrium]]. |
|||
=== Attachment and invasion of cytotrophoblast into endometrium === |
|||
hCG secreted by cytotrophoblastic cells of the blastocyst controls endometrial tissue remodeling by both activation of matrix matalloproteinases (MMP) that control the maternal extracellular matrix and inhibition of tissue-inhibitors of matrix-metalloproteinases (TIMP). hCG mediates invasion and attachment to the endometrium <ref>Licht, P. et al (2007). Is human chorionic gonadotropin directly involved in the regulation of human implantation? Molecular and Cellular Endocrinology, 269, 85-92.</ref>. Low levels of hCG increase risk of pre-eclampsia <ref>Bahado-Singh, R., et al (2002). The role of hyperglycosylated hCG in trophoblast invasion and the prediction of subsequent [[pre-eclampsia]]. Prenatal Diagnosis, 22, 478-481.</ref>. |
|||
=== Uterine angiogenesis === |
|||
Uterine [[angiogenesis]] is upregulated by human chorionic gonadotropin and progesterone and downregulated by estrogen. The balance of influences of progesterone and estrogen determine the state of angiogenesis in the uterus during early pregnancy <ref>Ma, W. et al (2001). Adult Tissue Angiogenesis: Evidence for negative regulation by estrogen in the uterus. Molecular Endocrinology, 15, 1983-1992.</ref><ref>Zygmunt M, Herr F, Keller-Schoenwetter S, Kunzi-Rapp K, Münstedt K, Rao CV, Lang U, Preissner KT (2002). Characterization of human chorionic gonadotropin as a novel angiogenic factor. J Clin Endocrinol Metab. 87, 5290-5296.</ref>. |
|||
=== Suppression of the maternal immune system === |
|||
High levels of progesterone produced by the embryonic [[placenta]] regulate [[lymphocyte]] proliferation at the maternal-fetal interface, locally suppressing maternal [[immune response]] against the developing embryo <ref>Clemens, L., Siiteri, P., & Stites, D. (1979). Mechanism of immunosuppression of progesterone on maternal lymphocyte activation during pregnancy. The Journal of Immunology, 122, 1978-1985.</ref>. |
|||
=== Suppression of GnRH secretion to prevent further follicular maturation === |
|||
Negative feedback of progesterone inhibits hypothalamic pulsatile GnRH neurosecretion, ovulatory GnRH release and pituitary gonadotropin surges thereby effectively preventing further follicular maturation <ref>Yen S, et al. Causal relationship between hormonal variables in the menstrual cycle. In Ferin M, Richart RM, Vande Wiele RL (eds). Biorhythms and Human Reproduction. New York, John Wiley and Sons, 1974, pp 219-238.</ref><ref>Zeleznik, A., Fairchild Benyo, D. Control of follicular development, corpus luteum function and the recognition of pregnancy in higher primates. In Knobil E (ed). The Physiology of Reproduction. New York, Raven Press, 1994, pp 751-782.</ref><ref>Sleiter, N., Pang, Y., Park, C., Horton, T., Dong, J., Thomas, P., & Levine, J. (2009). Progesterone Receptor A (PRA) and PRB-Independent Effects of Progesterone on Gonadotropin-Releasing Hormone Release. Endocrinology, 150, 3833-3844.</ref>. |
|||
=== Preparation of maternal metabolic systems === |
|||
Progesterone regulates metabolism of [[carbohydrates]], [[proteins]], and [[lipids]], resulting in physiological changes associated with pregnancy. The mix of hormones characteristic of early pregnancy promote natural growth of maternal tissues and weight gain <ref>Kalkhoff, R. (1982). Metabolic effects of progesterone. American Journal of Obstetrician Gynecology, 142, 735-738.</ref>. In the second half of pregnancy, progesterone and prolactin prepare the mammary glands for lactation <ref name=Atwood2000>Atwood, C. et al (2000). Progesterone induces side-branching of the ductal epithelium in the [[mammary glands]] of peripubertal mice. Journal of Endocrinology, 167, 39-52.</ref>. |
|||
=== Preparation of mammary glands for lactation === |
|||
Estrogens and progesterone promote mammary epithelial cell proliferation resulting in the formation of the primary and secondary ductal structure. Progesterone induces formation of tertiary side-branches in the mammary glands during puberty and during the luteal phase of the [[menstrual cycle]] upon which lobuloalveolar structures form under the influence of [[prolactin]]. Prolactin stimulates [[lactogenesis]] <ref name=Atwood2000/><ref>Fantl, V., Edwards, P., Steel, J., Vonderhaar, B., & Dickson, C. (1999). Impaired Mammary Gland Development in Cyl-12/2 Mice during Pregnancy and Lactation Is Epithelial Cell Autonomous. Developmental Biology, 212, 1–11.</ref>. |
|||
=== Induction of sleep === |
|||
hCG appears to be [[soporific]] during pregnancy; levels of hCG correlate with sleep changes during pregnancy, and administration of hCG increases sleep in rats likely via neuronal LHCGR <ref>Rao, C. et al (1995). Peripheral and intracerebroventricular administration of human chorionic gonadotropin alters several hippocampus-associated behaviors in cycling female rats. Hormones and Behavior, 29, 42-58</ref>. |
|||
== See Also == |
|||
[[Reproductive-Cell Cycle Theory]] |
|||
== References == |
|||
{{Reflist}} |
|||
{{Uncategorized|date=March 2011}} |