From Wikipedia, the free encyclopedia
In the study of Dirac fields in quantum field theory , Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation [ 1] ). If A is a covariant vector (i.e., a 1-form ),
A
/
=
d
e
f
γ
μ
A
μ
{\displaystyle A\!\!\!/\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{\mu }A_{\mu }}
using the Einstein summation notation where γ are the gamma matrices .
Identities
Using the anticommutators of the gamma matrices, one can show that for any
a
μ
{\displaystyle a_{\mu }}
and
b
μ
{\displaystyle b_{\mu }}
,
a
/
a
/
=
a
μ
a
μ
⋅
I
4
×
4
=
a
2
⋅
I
4
×
4
{\displaystyle a\!\!\!/a\!\!\!/=a^{\mu }a_{\mu }\cdot I_{4\times 4}=a^{2}\cdot I_{4\times 4}}
a
/
b
/
+
b
/
a
/
=
2
a
⋅
b
⋅
I
4
×
4
{\displaystyle a\!\!\!/b\!\!\!/+b\!\!\!/a\!\!\!/=2a\cdot b\cdot I_{4\times 4}\,}
.
where
I
4
×
4
{\displaystyle I_{4\times 4}}
is the identity matrix in four dimensions.
In particular,
∂
/
2
=
∂
2
⋅
I
4
×
4
.
{\displaystyle \partial \!\!\!/^{2}=\partial ^{2}\cdot I_{4\times 4}.}
Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products . For example,
tr
(
a
/
b
/
)
=
4
a
⋅
b
{\displaystyle \operatorname {tr} (a\!\!\!/b\!\!\!/)=4a\cdot b}
tr
(
a
/
b
/
c
/
d
/
)
=
4
[
(
a
⋅
b
)
(
c
⋅
d
)
−
(
a
⋅
c
)
(
b
⋅
d
)
+
(
a
⋅
d
)
(
b
⋅
c
)
]
{\displaystyle \operatorname {tr} (a\!\!\!/b\!\!\!/c\!\!\!/d\!\!\!/)=4\left[(a\cdot b)(c\cdot d)-(a\cdot c)(b\cdot d)+(a\cdot d)(b\cdot c)\right]}
tr
(
γ
5
a
/
b
/
c
/
d
/
)
=
4
i
ϵ
μ
ν
λ
σ
a
μ
b
ν
c
λ
d
σ
{\displaystyle \operatorname {tr} (\gamma _{5}a\!\!\!/b\!\!\!/c\!\!\!/d\!\!\!/)=4i\epsilon _{\mu \nu \lambda \sigma }a^{\mu }b^{\nu }c^{\lambda }d^{\sigma }}
γ
μ
a
/
γ
μ
=
−
2
a
/
{\displaystyle \gamma _{\mu }a\!\!\!/\gamma ^{\mu }=-2a\!\!\!/}
.
γ
μ
a
/
b
/
γ
μ
=
4
a
⋅
b
⋅
I
4
×
4
{\displaystyle \gamma _{\mu }a\!\!\!/b\!\!\!/\gamma ^{\mu }=4a\cdot b\cdot I_{4\times 4}\,}
γ
μ
a
/
b
/
c
/
γ
μ
=
−
2
c
/
b
/
a
/
{\displaystyle \gamma _{\mu }a\!\!\!/b\!\!\!/c\!\!\!/\gamma ^{\mu }=-2c\!\!\!/b\!\!\!/a\!\!\!/\,}
where
ϵ
μ
ν
λ
σ
{\displaystyle \epsilon _{\mu \nu \lambda \sigma }\,}
is the Levi-Civita symbol .
With four-momentum
Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum :
using the Dirac basis for the
γ
{\displaystyle \gamma \,}
's,
γ
0
=
(
I
0
0
−
I
)
,
γ
i
=
(
0
σ
i
−
σ
i
0
)
{\displaystyle \gamma ^{0}={\begin{pmatrix}I&0\\0&-I\end{pmatrix}},\quad \gamma ^{i}={\begin{pmatrix}0&\sigma ^{i}\\-\sigma ^{i}&0\end{pmatrix}}\,}
as well as the definition of four momentum
p
μ
=
(
E
,
−
p
x
,
−
p
y
,
−
p
z
)
{\displaystyle p_{\mu }=\left(E,-p_{x},-p_{y},-p_{z}\right)\,}
We see explicitly that
p
/
=
γ
μ
p
μ
=
γ
0
p
0
+
γ
i
p
i
=
[
p
0
0
0
−
p
0
]
+
[
0
σ
i
p
i
−
σ
i
p
i
0
]
=
[
E
−
σ
⋅
p
→
σ
⋅
p
→
−
E
]
{\displaystyle {\begin{aligned}p\!\!/&=\gamma ^{\mu }p_{\mu }=\gamma ^{0}p_{0}+\gamma ^{i}p_{i}\\&={\begin{bmatrix}p_{0}&0\\0&-p_{0}\end{bmatrix}}+{\begin{bmatrix}0&\sigma ^{i}p_{i}\\-\sigma ^{i}p_{i}&0\end{bmatrix}}\\&={\begin{bmatrix}E&-\sigma \cdot {\vec {p}}\\\sigma \cdot {\vec {p}}&-E\end{bmatrix}}\end{aligned}}}
Similar results hold in other bases, such as the Weyl basis .
See also
References
Halzen, Francis; Martin, Alan (1984). Quarks & Leptons: An Introductory Course in Modern Particle Physics . John Wiley & Sons. ISBN 0-471-88741-2 . {{cite book }}
: CS1 maint: multiple names: authors list (link )