File:BMI-30-Worldmap-2014.svg
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance
Size of this PNG preview of this SVG file: 800 × 382 pixels. Other resolutions: 320 × 153 pixels | 640 × 306 pixels | 1,024 × 489 pixels | 1,280 × 612 pixels | 2,560 × 1,223 pixels | 1,620 × 774 pixels.
Original file (SVG file, nominally 1,620 × 774 pixels, file size: 470 KB)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionBMI-30-Worldmap-2014.svg |
English: Percentage of people with a body mass index ≥ 30kg/m2 per country in 2014
Data from http://www.who.int/gho/ncd/risk_factors/overweight/en/ http://obesity.procon.org/view.resource.php?resourceID=006032 Country shapes from http://www.naturalearthdata.com/downloads/110m-cultural-vectors Created with Python and Matplotlib Basemap Toolkit. |
Date | |
Source | Own work |
Author | MagHoxpox |
"""
Percentage of people with a body mass index >= 30kg/m^2 per country in 2014
Country shapes from http://www.naturalearthdata.com/downloads/110m-cultural-vectors/
"""
import numpy as np
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, PathPatch
from matplotlib.collections import PatchCollection
from matplotlib.colors import LinearSegmentedColormap
#########################################################################################
# read values from data in wiki-table format
data = "".join(open("bmi30-wiki.txt").readlines())
data = data.replace("\n", "").replace("{","").replace("}","").replace("%","").replace(".","").replace(",",".").split("|-")[1:]
value={}
for line in data:
line = line.split("|")
val=float(line[3])
key = line[2]
value[key]=val
#########################################################################################
# draw empty worldmap
fig = plt.figure(figsize=(18,8.6))
plt.subplots_adjust(left=0.01, bottom=0.01, right=1.12, top=0.99)
m = Basemap(projection='robin',lon_0=0, llcrnrlat=-60,urcrnrlat=85, llcrnrlon=-180, urcrnrlon=180, resolution='l')
m.drawmapboundary()
#########################################################################################
# color country shapes
m.readshapefile('ne_110m_admin_0_countries/ne_110m_admin_0_countries', name='world', drawbounds=True, color='gray')
countries = []
undefined_countries = []
valueList = []
lastValues = []
for info, shape in zip(m.world_info, m.world):
try:
key = info["ADM0_A3"]
val = value[key]
except KeyError:
undefined_countries.append(Polygon(np.array(shape), True))
continue
pol = Polygon(np.array(shape), True)
# Workaround: the inner borders of South Africa to Lesotho are missing.
if key=="LSO":
lastValues.append((pol, val))
else:
countries.append(pol)
valueList.append(val)
for pol, val in lastValues:
countries.append(pol)
valueList.append(val)
valueArray = np.array(valueList)
print valueArray.min(), valueArray.max()
ticks = np.linspace(5, 35,7)
#########################################################################################
# colorbar, modified "gist_rainbow" theme
_gist_rainbow_data = (
(0.000, (1.00, 1.00, 0.80)),
#(0.030, (1.00, 0.00, 0.00)),
(0.215, (1.00, 1.00, 0.00)),
(0.400, (0.00, 1.00, 0.00)),
(0.586, (0.00, 1.00, 1.00)),
(0.770, (0.00, 0.00, 1.00)),
(0.954, (1.00, 0.00, 1.00)),
(1.000, (1.00, 0.00, 0.75)))
cm = LinearSegmentedColormap.from_list("cm", _gist_rainbow_data, 256)
p = PatchCollection(countries, alpha=0.5, zorder=3, cmap=cm)
p.set_array(valueArray)
p.set_clim([ticks.min(), ticks.max()])
plt.gca().add_collection(p)
cb = fig.colorbar(p, ticks = ticks, shrink=0.6, pad = 0.02, drawedges=False)
cb.solids.set_edgecolor("face")
#########################################################################################
# set countries without data to lightgray
p2 = PatchCollection(undefined_countries, alpha=0.5, zorder=3, cmap=LinearSegmentedColormap.from_list("lg", ["lightgray", "lightgray"]))
p2.set_array(np.ones((len(undefined_countries),)))
plt.gca().add_collection(p2)
#########################################################################################
# save and show
filename = "BMI-30-Worldmap-2014"
plt.savefig(filename + ".svg")
plt.show()
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Items portrayed in this file
depicts
6 January 2018
image/svg+xml
519958f5c24f86757d1aa8f14ba36dde3e7e866d
480,817 byte
774 pixel
1,620 pixel
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 10:17, 6 January 2018 | 1,620 × 774 (470 KB) | MagHoxpox | User created page with UploadWizard |
File usage
No pages on the English Wikipedia use this file (pages on other projects are not listed).
Global file usage
The following other wikis use this file:
- Usage on de.wikipedia.org
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Width | 1296pt |
---|---|
Height | 619pt |
Retrieved from "https://en.wikipedia.org/wiki/File:BMI-30-Worldmap-2014.svg"