File:Cubicpoly.svg
Appearance
Size of this PNG preview of this SVG file: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,048 × 2,048 pixels | 1,000 × 1,000 pixels.
Original file (SVG file, nominally 1,000 × 1,000 pixels, file size: 14 KB)
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 20:06, 21 January 2010 | 1,000 × 1,000 (14 KB) | Beao | Changed to supported font. | |
13:18, 6 December 2009 | 1,000 × 1,000 (15 KB) | Makotoy | I broke something. Revert to the prev. ver. while investigate the problem | ||
13:15, 6 December 2009 | 1,000 × 1,000 (13 KB) | Makotoy | hand-optimized graph label for better thumbnail | ||
13:34, 3 August 2006 | 1,000 × 1,000 (15 KB) | Qualc1 | == Summary == {{Information| |Description=Function: <math>y=x^3 - 9*x</math> |Source=Self-made using gnuplot and inkscape |Date=2006-08-03 |Author=Qualc1 |Permission=See below |other_versions= - }} == Inst |
File usage
No pages on the English Wikipedia use this file (pages on other projects are not listed).
Global file usage
The following other wikis use this file:
- Usage on ar.wikipedia.org
- Usage on be.wikipedia.org
- Usage on ca.wikipedia.org
- Usage on cv.wikipedia.org
- Usage on cy.wikipedia.org
- Usage on es.wikipedia.org
- Usage on eu.wikipedia.org
- Usage on fr.wiktionary.org
- Usage on gl.wikipedia.org
- Usage on hi.wikipedia.org
- Usage on it.wikipedia.org
- Usage on ja.wikipedia.org
- Usage on lmo.wikipedia.org
- Usage on lo.wikipedia.org
- Usage on nl.wikipedia.org
- Usage on pt.wikipedia.org
- Derivada
- Função exponencial
- Limite
- Função de Möbius
- Função de Mertens
- Função injectiva
- Cosseno
- Logaritmo
- Seno
- Tangente
- Fatorial
- Integral
- Função constante
- Projeção (matemática)
- Função de Cobb-Douglas
- Primitiva
- Curva
- Função identidade
- Gráfico
- Função suave
- Função bijectiva
- Função inclusão
- Função sobrejectiva
- Cossecante
- Função de Ackermann
- Pontos extremos de uma função
View more global usage of this file.