Some of the particular solutions are in blue; the singular solution is in green; and a hybrid solution is in red. I used this image on Wikipedia's ODE page to illustrate the different types of solution.
baccala@freesoft.org 29 Oct 2005
Date
29 October 2005 (original upload date)
Source
No machine-readable source provided. Own work assumed (based on copyright claims).
#!/usr/bin/gnuplot
set terminal png
set output "diffeq.png"
set key off
set style line 1 lt 8
set style line 2 lt 2 lw 3
set style line 3 lt 1 lw 3
# set yzeroaxis lt -1
set parametric
plot [x=-10:10] [-10:10] [-25:25] \
x,0 ls 1, \
x,x+1 ls 1, \
x,-x+1 ls 1, \
x,2*x+4 ls 1, \
x,-2*x+4 ls 1, \
x,3*x+9 ls 1, \
x,-3*x+9 ls 1, \
x,4*x+16 ls 1, \
x,-4*x+16 ls 1, \
x,5*x+25 ls 1, \
x,-5*x+25 ls 1, \
x,6*x+36 ls 1, \
x,-6*x+36 ls 1, \
x,7*x+49 ls 1, \
x,-7*x+49 ls 1, \
x,8*x+64 ls 1, \
x,-8*x+64 ls 1, \
x,9*x+81 ls 1, \
x,-9*x+81 ls 1, \
x,10*x+100 ls 1, \
x,-10*x+100 ls 1, \
x,11*x+121 ls 1, \
x,-11*x+121 ls 1, \
x,-(.25)*(x*x) ls 2, \
(x-12),(x-12)+1 ls 3, \
(x+12),-(x+12)+1 ls 3, \
(x/5),-(.25)*((x/5)*(x/5)) ls 3
% MatLab code
h = figure
hold on
box on
x = [-10 10];
plot(x,[0 0]);
V = [1:1:11];
for i=1:numel(V)
plot(x,V(i)*x+V(i)^2,'b',x,-V(i)*x+V(i)^2,'b');
end
x = [-10:0.1:10];
plot(x,-0.25*x.*x,'g','LineWidth',3);
plot(x-12, (x-12)+1,'r','LineWidth',2);
plot(x+12,-(x+12)+1,'r','LineWidth',2);
plot((x/5),-.01*x.*x,'r','LineWidth',2);
axis([-10 10 -25 25]);
axis square
Licensing
Public domainPublic domainfalsefalse
I, the copyright holder of this work, release this work into the public domain. This applies worldwide. In some countries this may not be legally possible; if so: I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Captions
Add a one-line explanation of what this file represents