import matplotlib.pyplot as plt
import sys
lang = "en"
#lang = "tr"
#If text changed in future default size may chop off part of text so may need to set size
#fig = plt.figure(figsize=(width, height))
#fig = plt.figure(figsize=(6, 4))
fig = plt.figure()
# Set font size as default was a bit small to read
fontsize = 14
#Get current axes object
ax = fig.gca()
# Global warming potentials to compare other gases with CO2 - from Wikipedia article
GWP_CH4 = 34
GWP_N2O = 298
#2018 data from https://unfccc.int/documents/223579 Turkey. 2020 Common Reporting Format (CRF) Table
#New data yearly so please update above url on 15 April 2021 with 2019 data
year = "2018"
# TABLE 1.A(a) SECTORAL BACKGROUND DATA FOR ENERGY 1.A.1.a.i
# Electricity Generation Solid Fuels
# kt CO2
# Current spreadsheet cell G33 (G26 includes Combined Heat and Power)
Electricity_coal = 109814
# Electricity Generation Gaseous Fuels
# G34 (G27 includes Combined Heat and Power)
Electricity_gas = 32076
# 1.A.3 b. Road transportation
# G19 (cars not split out)
Road_transport = 77289
# 1.A.4 a. Commercial/institutional energy G16
Work_buildings = 13484
# 1.A.4 b. Residential G30
Home_fuel = 37192
# 2A1 1. G10 (clinker production)
Cement = 37026
# 3A. Enteric fermentation 1. Cattle
Cattle_enteric_fermentation = 1034 * GWP_CH4 # Convert methane to CO2eq
#3B. Manure management 1. Cattle
Cattle_manure = (143 * GWP_CH4) + (6.08 * GWP_N2O)
Cattle = Cattle_enteric_fermentation + Cattle_manure
# Total without LULUCF from National Inventory Report or elsewhere
total_Mt = 520.9
total = total_Mt * 1000
Other = total - (Electricity_coal + Road_transport + Cattle + Home_fuel + Cement + Electricity_gas)
#Put in order of size to make easier to compare
percents = [Electricity_coal, Road_transport, Cattle, Home_fuel, Cement, Electricity_gas, Other]
# From https://learnui.design/tools/data-color-picker.html#palette
colors = ['#4f4c4c', '#7e5853', '#a86452', '#cd7548', '#eb8a34', '#ffa600', 'whitesmoke']
# Or you can use color names like:
#colors = ['peru' ,'grey' ,'pink' ,'lightgrey','orange','khaki' ,'whitesmoke']
if lang == "en":
plt.title ("Greenhouse gases largest sources in Turkey " + year, fontsize = fontsize)
autopct='%1.0f%%' # % sign after number in English
labels = ['Electricity (coal)','Road Transport','Cattle','Home fuel','Cement','Electricity (gas)','Other']
elif lang == "tr":
plt.title (year + " Needs translating", fontsize = fontsize)
autopct='%%%1.0f' # % sign before number in Turkish
labels = ['Kömürden Elektriği', 'Karayolu Ulaşim', 'Sığırlar', 'Evler', 'Çimento','Doğalgazdan Elektriği', 'Diğer']
else:
print("Unknown language " + lang)
sys.exit()
ax.pie(percents, labels=labels, textprops={'fontsize': fontsize}, colors=colors, counterclock=False, startangle=90)
# Or if you want percents use below but that also puts % on the "other" slice
#ax.pie(percents, labels=labels, textprops={'fontsize': 10}, colors=colors, autopct=autopct, counterclock=False, startangle=90)
if lang == "en":
plt.savefig('ghg_pie_chart_Turkey_' + year + '.svg')
elif lang == "tr":
plt.savefig('sera_gazlar_Türkiye_' + year + '.svg')
else:
print("Unknown language " + lang)
sys.exit()
plt.show()