File:Jacobi Elliptic Functions (on Jacobi Hyperbola).svg
Original file (SVG file, nominally 1,210 × 691 pixels, file size: 77 KB)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionJacobi Elliptic Functions (on Jacobi Hyperbola).svg |
English: Plot of the Jacobi hyperbola (x2+y2/b2=1, b imaginary) and the twelve Jacobi Elliptic functions pq(u|m) for particular values of angle φ and parameter b. The solid curve is the hyperbola, with m=1-1/(b2) and u=F(φ,m) where F(.|.) is the elliptic integral of the first kind. The dotted curve is the unit circle. For the ds-dc triangle,
σ= Sin(φ)Cos(φ). |
Date | |
Source | Own work |
Author | PAR |
SVG development InfoField | This trigonometry was created with Mathematica. |
Mathematica Code
This code is also used https://commons.wikimedia.org/w/File:Jacobi_Elliptic_Functions_(on_Jacobi_Ellipse).svg, but with different input parameters, found at the top of the code. (To copy the code, edit, select and copy)
$Assumptions={True};
(* The parameters *) b=0.7 ;\[Phi]=Chop[JacobiAmplitude[0.60,1-1/b^2]]; (* The Jacobi Ellipse Plot *) b=0.7 I ;\[Phi]=Chop[JacobiAmplitude[0.55,1-1/b^2]]; (* The Jacobi Hyperbola Plot *) m=1-1/b^2; u = Chop[N[u = EllipticF[\[Phi], m]]];
(* The Jacobi Elliptical functions *)
sc=Chop[JacobiSC[u,m]];
sn=Chop[JacobiSN[u,m]];
sd=Chop[JacobiSD[u,m]];
cs=Chop[JacobiCS[u,m]];
cn=Chop[JacobiCN[u,m]];
cd=Chop[JacobiCD[u,m]];
ns=Chop[JacobiNS[u,m]];
nc=Chop[JacobiNC[u,m]];
nd=Chop[JacobiND[u,m]];
ds=Chop[JacobiDS[u,m]];
dc=Chop[JacobiDC[u,m]];
dn=Chop[JacobiDN[u,m]];
(* Plotting functions *) Clear[plot$hline,plot$vline,plot$rline] fontsize=18; plot$hline[start_,length_,color_,label_]:=Module[{v,labelpos}, (* Plot a horizontal line with arrowhead and label *) v={{start,0},{start+length,0}}; labelpos=v2+{0,-0.0035}fontsize; Graphics[{Arrowheads[0.04],color,Arrow[v],Inset[Style[label,FontSize->fontsize],labelpos]}] ] plot$vline[start_,length_,color_,label_]:=Module[{v,labelpos},(* Plot a vertical line with label *) v={{start,0},{start,length}}; labelpos=Mean[v]+{0.0025 ,0}fontsize; Graphics[{color,Line[v],Inset[Style[label,FontSize->fontsize],labelpos]}] ] plot$rline[start_,length_,x_,y_,color_,label_]:=Module[{v,r,labelpos}, (* Plot a radial line with arrowhead and label *) r=Sqrt[x^2+y^2]; v={{0,0},{x/r,y/r}length}; (* Dont assume x^2+y^2=length^2, use x/r and y/r as cosine and sine *) labelpos=v2+{-0.004 ,0.0008}fontsize; Graphics[{Arrowheads[0.04],color,Arrow[v],Inset[Style[label,FontSize->fontsize],labelpos]}] ]
(* Plots *)
(* The angle \[Phi] *) r\[Phi]=0.2; Plot\[Phi]=Plot[Sqrt[(r\[Phi]^2-x^2)],{x,r\[Phi] Cos[\[Phi]],r\[Phi]},PlotStyle->{Black},Background->RGBColor[1,1,1,.5]]; (* angle \[Phi] *) \[Phi]pos=(r\[Phi]+0.0033 fontsize){Cos[\[Phi]/2],Sin[\[Phi]/2]}; Plot\[Phi]={Plot\[Phi],Graphics[Text[Style["\[Phi]",FontSize->fontsize],\[Phi]pos]]};
(* The Jacobi curve and the unit circle and the y=1 line *) PlotC=Plot[Sqrt[(1-x^2)],{x,0,1},PlotStyle->{Black,Dotted},Background->RGBColor[1,1,1,.5]]; (* Circle *) PlotJ1=Plot[Sqrt[b^2(1-x^2)],{x,0,Cot[\[Phi]]},PlotStyle->{Black,Thickness[0.007]},Background->None]; (* Ellipse or hyperbola *) PlotJ2=Plot[Sqrt[b^2(1-x^2)],{x,Min[{1,cd}],Max[{1,cd}]},PlotStyle->{Red,Thickness[0.007]},Background->None]; (* Ellipse or hyperbola swept by \[Phi] *) PlotTop=ListPlot[{{0,0},{0,1},{cs,1}},Joined->True,PlotStyle->{Black,Dotted}]; (* Top y=1 dotted line *)
(* The triangles - Just to be sure, it's not assumed that their origin angle is \[Phi] *)
(* cd, sd, nd triangle *) t1={ plot$hline[00,cd,Red,"cd"], plot$vline[cd,sd,Red,"sd"], plot$rline[00,nd,cd,sd,Red,"nd"]};
(* cn, sn, 1 triangle *) t2={ plot$hline[00,cn,Green,"cn"], plot$vline[cn,sn,Green,"sn"], plot$rline[00,01,cn,sn,Green,"1"]};
(* 1,sc,nc triangle *) t3={ plot$hline[00,01,Blue,"1"], plot$vline[01,sc,Blue,"sc"], plot$rline[00,nc,1,sc,Blue,"nc"]};
(* cs,1,ns triangle *) t4={ plot$hline[00,cs,Cyan,"cs"], plot$vline[cs,01,Cyan,"1"], plot$rline[00,ns,cs,1,Cyan,"ns"]};
(* ds, dc, dn/\[Sigma] triangle *) \[Sigma]=Sin[\[Phi]]Cos[\[Phi]]; t5={ plot$hline[00,ds ,Black,"ds"], plot$vline[ds ,dc ,Black,"dc"], plot$rline[00,dn/\[Sigma] ,ds,dc,Black,"dn/\[Sigma]"]};
(* The Legend *) s1=Text[Style["b = "ToString[TraditionalForm[N[b]]],FontSize->fontsize]]; s2=Text[Style["m = "<>ToString[TraditionalForm[Chop[N[m]]]],FontSize->fontsize]]; s3=Text[Style["\[Phi] = "<>ToString[TraditionalForm[N[\[Phi]]]],FontSize->fontsize]]; s4=Text[Style["u = "<>ToString[TraditionalForm[Chop[N[u]]]],FontSize->fontsize,Red]]; tg=TextGrid[{{s1},{s2},{s3},{s4}}];
(* Combine plots and display *) Show[Flatten[{PlotC,Plot\[Phi],PlotJ1,PlotJ2,PlotTop,t5,t4,t3,t2,t1}],PlotRange->All,AspectRatio->Automatic,PlotLabel->Text[Style["Jacobi Elliptic Functions",FontSize->fontsize]],Epilog->Inset[tg,{.27,.45}]]
Licensing
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Items portrayed in this file
depicts
18 December 2017
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 11:16, 25 January 2018 | 1,210 × 691 (77 KB) | PAR | Change red u and arc length to black, add e.g. ss=1 for unit lengths. | |
16:59, 18 December 2017 | 929 × 641 (83 KB) | PAR | User created page with UploadWizard |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Width | 968pt |
---|---|
Height | 553pt |