Jump to content

File:Julia set for f(z)=z2 over (z9-z+0.025).png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (2,000 × 2,000 pixels, file size: 540 KB, MIME type: image/png)

Summary

Description
English: Julia set for the rational map . Location by Michael Becker[1] Description by xenodreambuie.[2] There are 3 attracting cycles ( and basins) : Two period 2 basins and one period 1 basin. Cycles:
  • { -0.4673334948710465 + 0.1476668526650723*I, 0.4421110686781006-0.1478330722419193*I};
  • { -0.4673334948710465 - 0.1476668526650723*I, 0.4421110686781006+0.1478330722419193*I};
  • { 0.0}
Deutsch: f(z)=z2/(z9-z+0,025), dargestellt auf [-2;2]x[-2;2] von Michael Becker[3]
Date
Source Own work
Author Adam majewski

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

c source code

/*

here are:
* 10 critical points
* 3 attracting cycles : Two period 2 basins and one period 1 basin 



(z)=z2/(z9-z+0,025), dargestellt auf [-2;2]x[-2;2].

https://web.archive.org/web/20161024194435/http://www.ijon.de/mathe/julia/some_julia_sets_4.html
page 4 image  b062


https://fractalforums.org/fractal-mathematics-and-new-theories/28/Rational-function/4279/45
f(z) := 1/{z^3 + 2.099609375*z  +0.349609375}



  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOf -> DrawPointOf -> ComputeColorOf ( FunctionTypeT FunctionType , complex double z) -> ComputeColor
  
  
  check only last function  which computes color of one pixel for given Function Type
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
  export  OMP_DISPLAY_ENV="TRUE"	
  gcc d.c -lm -Wall -march=native -fopenmp
  time ./a.out > b.txt


  gcc d.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >i.txt
  time ./a.out >e.txt
  
  
  convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png


  
  
*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP
#include <limits.h>		// Maximum value for an unsigned long long int



// https://sourceforge.net/p/predef/wiki/Standards/

#if defined(__STDC__)
#define PREDEF_STANDARD_C_1989
#if defined(__STDC_VERSION__)
#if (__STDC_VERSION__ >= 199409L)
#define PREDEF_STANDARD_C_1994
#endif
#if (__STDC_VERSION__ >= 199901L)
#define PREDEF_STANDARD_C_1999
#endif
#endif
#endif



/* Number of basins
computed in another program
basins are numbered for 0 to (BasinNumber -1) 
*/
#define BasinsNumber 3




/* --------------------------------- global variables and consts ------------------------------------------------------------ */


//FunctionType = representing functions
typedef enum  {
	Fatou_ab = 0, Fatou_abi = 2,  LSM = 3, LSM_m = 4, Unknown = 5 , BD = 6, MBD = 7 , SAC = 8, DLD = 9, ND = 10 , NP= 11, POT = 12 , Blend = 13, DEM = 14,
		
	} FunctionTypeT; 
// FunctionTypeT FunctionType;

// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 5000;	// size of the image  and time of computations 
// The size of array has to be a positive constant integer 
static unsigned long long int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
unsigned char *edge;
//unsigned char *edge2;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array



// see SetPlane
double PlaneRadius = 2.0; 
complex double center = 0.0 ;
double  PlaneAspectRatio  = 1.0; // https://en.wikipedia.org/wiki/Aspect_Ratio_(image)
// for check only 
double plane_ratio; 
// dx = dy compare setup : iWidth = iHeight;
double ZxMin; //= -1.3;	//-0.05;
double ZxMax;// = 1.3;	//0.75;
double ZyMin;// = -1.3;	//-0.1;
double ZyMax;// = 1.3;	//0.7;
double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;








int IterMax = 100000;
int IterMax_LSM = 1000;


/*  colors = shades of gray from 0 to 255  */
unsigned char iColorOfBasin0 = 245;
unsigned char iColorOfBasin1 = 171;
unsigned char iColorOfBasin2 = 97;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 5;

// pixel counters
unsigned long long int uUnknown = 0;
unsigned long long int uBasin0 = 0;
unsigned long long int uBasin1 = 0;
unsigned long long int uBasin2 = 0;




/*
=================================================================================================  =================================================================================================
==================================== basin data ====================================================
=======================================================================================================

https://en.wikibooks.org/wiki/Fractals/Iteeations_in_the_complex_plane/analysis#Basin_data

only virtual 
use arrray for each parameter of all basins 

typedef struct {
	int period; // number of points in the cycle
	complex double critical; // one critical point from the list of crtical points which fall into the cycle
	complex double attractor; // point from the cycle which is in  the same component as the critical point ( above)
	complex double multiplier; // 
	double radius; // radius of circle used as a trap ( target) : Attracting Radius= AR, Escaping Radius = ER
	double r2; // r2= radius*radius ( for numerical optimisation)
	double iterMax_radius; // number of iterations for computing radius 
	
	
} BasinT;

*/

// basins data computed in another porgram 

/* ------------------ critical  points  ---------------------------------------------*/

const complex double z_cr[BasinsNumber]= { 0.717933586272375+0.3001510209321582*I, 0.717933586272375-0.3001510209321582*I, 0.0}; 






/* --------------   attracting periodic points  ------------------------------------------
 3 attracting cycles : Two period 2 basins and one period 1 basin 


[-0.4673334948710465,0.1476668526650723],[0.4421110686781006,-0.1478330722419193]
[-0.4673334948710465,-0.1476668526650723],[0.4421110686781006,0.1478330722419193]]],
0.0

*/



const complex double z_a[BasinsNumber]={ 0.4673334948710465 + 0.1476668526650723*I, 0.4673334948710465 - 0.1476668526650723*I, 0.0};



const int periods[BasinsNumber]={2,2,1};
// rest of basins data is computed in the setup
double iterMax_radius[BasinsNumber];
double BasinRadius[BasinsNumber];
double r2[BasinsNumber];

/* ------------------------------------------ functions -------------------------------------------------------------*/

/* 
  original
   f(z)=z2/(z9-z+0,025), dargestellt auf [-2;2]x[-2;2].
(z)=z2/(z9-z+0,025), dargestellt auf [-2;2]x[-2;2].
*/


// complex function
static inline complex double f(const complex double z0) {

  double complex z = z0;
  complex double z2 = z*z;
  complex double z9 = z2*z2*z2*z2*z;
  
  z = z2/(z9 - z + 0.025);
  return  z;
}
	




// https://en.wikipedia.org/wiki/Viewport

static inline int is_z_inside_ViewPort(complex double z){

  if (creal(z) >ZxMax ||
      creal(z) <ZxMin ||
      cimag(z) >ZyMax ||
      cimag(z) <ZyMin)
      	{return 1; } // is outside = true
      
    
  return 0; // is inside = false



}




// from screen to world coordinate ; linear mapping
// uses global cons
static inline double GiveZx (int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses global const
static inline double GiveZy (int iy)
{
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


static inline complex double GiveZ (int ix, int iy)
{
  double Zx = GiveZx (ix);
  double Zy = GiveZy (iy);

  return Zx + Zy * I;




}







//------------------complex numbers -----------------------------------------------------

static inline double cabs2(complex double z){

  return creal(z)*creal(z)+cimag(z)*cimag(z);


}






/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
static inline unsigned int Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}













// ****************** DYNAMICS = trap tests ( target sets) ****************************



static inline int IsInBasin0(complex double z){

	if ( cabs2(z_a[0] - z) < r2[0] )
		{return 1;}
	return 0;	


}

static inline int IsInBasin1(complex double z){

	if ( cabs2(z_a[1] - z) < r2[1] )
		{return 1;}
	return 0;	


}

static inline int IsInBasin2(complex double z){

	if ( cabs2(z_a[2] - z) < r2[2] )
		{return 1;}
	return 0;	


}




/*
  3 basins 
  - basin 1 
  - basin 2
  - basin 3
  - unknown ( it should be an empty set ) 
  
  infinity is not superattracting here !!!!!	so no escape test and DEM !!!

*/

unsigned char ComputeColorOfFatou_ab (complex double z)
{

	int i;			// number of iterations
  	  
  	for (i = 0; i < IterMax; ++i){
    
		// 3 Attraction basins 
      		if ( IsInBasin0(z) )	{
      			#pragma omp atomic
      			uBasin0++;  
      			return iColorOfBasin0;}
	
      		if (IsInBasin1(z)) 	{
      			#pragma omp atomic
      			uBasin1++; 
      			return iColorOfBasin1;}			
      		if (IsInBasin2(z) )	{
      			#pragma omp atomic
      			uBasin2++; 
      			return iColorOfBasin2;}				
     
      		z = f(z);}	// forward iteeation: z(n+1) = f(zn)
	
	#pragma omp atomic
  	uUnknown++;
  	return iColorOfUnknown;
}


/*
  3 basins 
  - basin 1 
  - basin 2
  - basin 3
  - unknown ( possibly empty set ) 

*/

unsigned char ComputeColorOfFatou_abi (complex double z)
{


	int i;			// number of itePlaneAspectRation
	for (i = 0; i < IterMax; ++i) {


		//3 Attraction basins 
      		if ( IsInBasin0(z) ){ return iColorOfBasin0 - (i % periods[0])*50;}
	 
		if (IsInBasin1(z) ) { return iColorOfBasin1 + (i % periods[1])*50;}			

		if (IsInBasin2(z) ) { return iColorOfBasin2 + (i % periods[2])*50;}		
     
		z = f(z);}		//  itePlaneAspectRation: z(n+1) = f(zn)
	  
  	return iColorOfUnknown;

}






unsigned char ComputeColorOfLSM (complex double z)
{

	int i;			// number of itePlaneAspectRation
  	for (i = 0; i < IterMax_LSM; ++i){

		//3 Attraction basins 
      		if ( IsInBasin0(z) )	{ return iColorOfBasin0 - ((2*i) % 255);} 
	 	if (IsInBasin1(z)) 	{ return iColorOfBasin1 + ((3*i) % 255);}	
      		if (IsInBasin2(z) ) 	{ return iColorOfBasin2 + ((4*i) % 255);}		
	
      		z = f(z); }	

    	return iColorOfUnknown;


}



/* ==================================================================================================
   ============================= Draw functions ===============================================================
   =====================================================================================================
*/ 
unsigned char ComputeColor(FunctionTypeT FunctionType, complex double z){

	unsigned char iColor;
	
	
	
	switch(FunctionType){
  
  		case Fatou_ab :{iColor = ComputeColorOfFatou_ab(z); break;}
  	
  		case Fatou_abi :{iColor = ComputeColorOfFatou_abi(z); break;}
  
 		case LSM :{iColor = ComputeColorOfLSM(z); break;}
  
  	
  		//case LSM_m :{iColor = ComputeColorOfLSM_m(z); break;}
  
  		//case DEM : {iColor = ComputeColorOfDEMJ(z); break;}
	
    		/*	
  		case Unknown : {iColor = ComputeColorOfUnknown(z); break;}
		
  		case BD : {iColor = ComputeColorOfBD(z); break;}
		
  		case MBD : {iColor = ComputeColorOfMBD(z); break;}
		
  		case SAC : {iColor = ComputeColorOfSAC(z); break;}
  
  		case DLD : {iColor = ComputeColorOfDLD(z); break;}
		
  		case ND : {iColor = ComputeColorOfND(z); break;}
		
  		case NP : {iColor = ComputeColorOfNP(z); break;}
		
  		case POT : {iColor = ComputeColorOfPOT(z); break;}
		
  		case Blend : {iColor = ComputeColorOfBlend(z); break;}
    		*/	
  	
  		default: {}}
	
	return iColor;
}



// plots raster point (ix,iy) 
int DrawPoint ( unsigned char A[], FunctionTypeT FunctionType, int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  if(i<0 && i> iMax)
	{ return 1;}
  
  z = GiveZ(ix,iy);
  iColor = ComputeColor(FunctionType, z);
  A[i] = iColor ;		// 
  		
  	  
  return 0;
}




void DrawImage ( unsigned char A[], FunctionTypeT FunctionType)
{
	unsigned int ix, iy;		// pixel coordinate 
	
	fprintf (stderr, "compute image %d :\n", FunctionType);
	// for all pixels of image 
  	// https://stackoverflow.com/questions/13357065/how-does-openmp-handle-nested-loops
	#pragma omp parallel for  schedule(dynamic) private(ix,iy) 
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, "\t%d from %d \r", iy, iyMax);	//info but collapse  collapse(2) 
      		for (ix = ixMin; ix <= ixMax; ++ix)
			{DrawPoint(A, FunctionType, ix, iy); }}//  
    
  	fprintf (stderr, "\n");	//info 
  
  	
}







int PlotPoint(const complex double z, unsigned char A[]){

	
  unsigned int ix = (creal(z)-ZxMin)/PixelWidth;
  unsigned int iy = (ZyMax - cimag(z))/PixelHeight;
  unsigned int i = Give_i(ix,iy); /* index of _data array */
	
	
  if(i>-1 && i< iMax)
		{A[i]= 0;} //255-A[i];
	
	
  return 0;
	
}






int IsInsideCircle (int x, int y, int xcenter, int ycenter, int r){

	
  double dx = x- xcenter;
  double dy = y - ycenter;
  double d = sqrt(dx*dx+dy*dy);
  if (d<r) {    return 1;}
  return 0;
	  

} 

// Big point = disk 
int PlotBigPoint(const complex double z, double p_size, unsigned char A[]){

	
  unsigned int ix_seed = (creal(z)-ZxMin)/PixelWidth;
  unsigned int iy_seed = (ZyMax - cimag(z))/PixelHeight;
  unsigned int i;
	
	
  if (  is_z_inside_ViewPort(z)) 
  	{fprintf (stdout,"PlotBigPoint :  z= %.16f %+.16f*I is outside\n", creal(z), cimag(z)); return 1;} // do not plot	
	
  /* mark seed point by big pixel */
  int iSide =p_size*iWidth/2000.0 ; /* half of width or height of big pixel */
  int iY;
  int iX;
  for(iY=iy_seed-iSide;iY<=iy_seed+iSide;++iY){ 
    for(iX=ix_seed-iSide;iX<=ix_seed+iSide;++iX){ 
      if (IsInsideCircle(iX, iY, ix_seed, iy_seed, iSide)) {
	i= Give_i(iX,iY); /* index of _data array */
	//if(i>-1 && i< iMax)
		{A[i]= 0;} //255-A[i];
      }
     // else {printf(" bad point \n");}
	
    }}
	
	
  return 0;
	
}



int PlotAllPoints(const complex double zz[], int kMax, double p_size,unsigned char A[]){

  int k;
	
	
  printf("kMax = %d \n",kMax);
	

  for (k = 0; k < kMax; ++k)
    {
      //fprintf(stderr, "z = %+f %+f \n", creal(zz[k]),cimag(zz[k]));
      PlotBigPoint(zz[k], p_size, A);}
  return 0;





}




int DrawForwardOrbit(const complex double z0, const unsigned long long int i_Max, double p_size, unsigned char A[]){
 

  
  unsigned long long int i; /* nr of point of critical orbit */
  complex double z = z0;
  printf("draw forward orbit \n");
 
  PlotBigPoint(z, p_size, A);
  
  /* forward orbit of critical point  */
  for (i=1;i<i_Max ; ++i)
    {
      z  = f(z);
      //if (cabs2(z - z2a) > 2.0) {return 1;} // escaping
      PlotBigPoint(z, p_size/2 , A);
    }
  
    fprintf (stdout,"first point of the orbit z0= %.16f %+.16f*I \n", creal(z0), cimag(z0));
    fprintf (stdout,"last point of the orbit z= %.16f %+.16f*I \n", creal(z), cimag(z));
   
  return 0;
 
}



// ***********************************************************************************************
// ********************** draw line segment ***************************************
// ***************************************************************************************************




// plots raster point (ix,iy) 
int iDrawPoint(unsigned int ix, unsigned int iy, unsigned char iColor, unsigned char A[])
{ 

 /* i =  Give_i(ix,iy) compute index of 1D array from indices of 2D array */
 if (ix >=ixMin && ix<=ixMax && iy >=iyMin && iy<=iyMax )
 	{A[Give_i(ix,iy)] = iColor;}
 	else {fprintf (stdout,"iDrawPoint :   (%d; %d) is outside\n", ix,iy); }

return 0;
}



/*
http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm
Instead of swaps in the initialisation use error calculation for both directions x and y simultaneously:
*/
void iDrawLine( int x0, int y0, int x1, int y1, unsigned char iColor, unsigned char A[]) 
{
  int x=x0; int y=y0;
  int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1;
  int dy = abs(y1-y0), sy = y0<y1 ? 1 : -1; 
  int err = (dx>dy ? dx : -dy)/2, e2;

  for(;;){
    iDrawPoint(x, y, iColor, A);
    if (x==x1 && y==y1) break;
    e2 = err;
    if (e2 >-dx) { err -= dy; x += sx; }
    if (e2 < dy) { err += dx; y += sy; }
  }
}




int dDrawLineSegment(double complex Z0, double complex Z1, int color, unsigned char *array) 
{

	double Zx0 = creal(Z0);
	double Zy0 = cimag(Z0);
	double Zx1 = creal(Z1);
	double Zy1 = cimag(Z1);
 	unsigned int ix0, iy0; // screen coordinate = indices of virtual 2D array 
 	unsigned int ix1, iy1; // screen coordinate = indices of virtual 2D array

   	// first step of clipping
   	//if (  Zx0 < ZxMax &&  Zx0 > ZxMin && Zy0 > ZyMin && Zy0 <ZyMax 
    	 // && Zx1 < ZxMax &&  Zx1 > ZxMin && Zy1 > ZyMin && Zy1 <ZyMax )
   	
   	ix0= (Zx0- ZxMin)/PixelWidth; 
   	iy0 = (ZyMax - Zy0)/PixelHeight; // inverse Y axis 
   	ix1= (Zx1- ZxMin)/PixelWidth; 
   	iy1= (ZyMax - Zy1)/PixelHeight; // inverse Y axis 
   	
   	// second step of clipping
   	if (ix0 >=ixMin && ix0<=ixMax && ix0 >=ixMin && ix0<=ixMax && iy0 >=iyMin && iy0<=iyMax && iy1 >=iyMin && iy1<=iyMax )
   		iDrawLine(ix0,iy0,ix1,iy1,color, array) ;

return 0;
}




int DrawAttractors(const complex double zpa[], const complex double zpb[], int kMax, double p_size, unsigned char A[]){

	
	//PlotAllPoints(zpa, Basin1.period, p_size,A);
	//dDrawLineSegment(zpa[0], zpa[1],0,A);
	
	//PlotAllPoints(zpb, Basin2.period, p_size, A);
	//dDrawLineSegment(zpb[0], zpb[1],0,A);
	

	return 0;

}






// ***********************************************************************************************
// ********************** edge detection using Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  memset(D, iColorOfBasin0, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfBasin0);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for collapse(2) schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}



// FillAllArrayWithColor
//memset (data, 255, sizeof (unsigned char ) * iSize);



// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int SaveArray2PGMFile (unsigned char A[],  char * n, char *comment)
{

  FILE *fp;
  const unsigned int MaxColorComponentValue = 255;	/* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name[100];		/* name of file */
  snprintf (name, sizeof name, "%.1f_%d_%s", PlaneRadius, iHeight, n );	/* PlaneRadius and iHeght are global variables */
  char *filename = strcat (name, ".pgm");
  char long_comment[200];
  sprintf (long_comment, "Julia set  f(z)=z2/(z9-z+0.025)  Location by Michael Becker %s", comment);





  // save image array to the pgm file 
  fp = fopen (filename, "wb");	// create new file,give it a name and open it in binary mode 
  fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue);	// write header to the file
  size_t rSize = fwrite (A, sizeof(A[0]), iSize, fp);	// write whole array with image data bytes to the file in one step 
  fclose (fp);

  // info 
  if ( rSize == iSize) 
    {
      fprintf (stdout, "File %s saved ", filename);
      if (long_comment == NULL || strlen (long_comment) == 0)
	printf ("\n");
      else { fprintf (stdout, ". Comment = %s \n", long_comment); }
    }
  else {fprintf(stdout, "wrote %zu elements out of %llu requested\n", rSize,  iSize);}

  return 0;
}



// *******************************************************************************************
// ********************************** print info ****************************
// *********************************************************************************************


int PrintCInfo ()
{

  printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);	// https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is displayed in the console : export  OMP_DISPLAY_ENV="TRUE"

  printf ("__STDC__ = %d\n", __STDC__);
  printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__);
  printf ("c dialect = ");
  switch (__STDC_VERSION__)
    {				// the format YYYYMM 
    case 199409L: printf ("C94\n"); break;
    case 199901L: printf ("C99\n"); break;
    case 201112L: printf ("C11\n"); break;
    case 201710L: printf ("C18\n"); break;
    //default : /* Optional */

    }

  return 0;
}



void PrintBasinsData(){

	int b; // basin number
	int bMax = BasinsNumber;
	
	for (b=0; b< bMax; ++b ){
		fprintf(stdout, "\n\n");
		fprintf(stdout, "Basin %d data \n", b);
		fprintf(stdout, "\tperiod = %d \n", periods[b] );
		fprintf(stdout, "\tcritical point = %.16f%+.16f*I\n", creal(z_cr[b]), cimag(z_cr[b]) );
		fprintf(stdout, "\tattractor = %.16f%+.16f*I\n", creal(z_a[b]), cimag(z_a[b]) );
  		fprintf(stdout, "\titerMax_radius = %.0f \n", iterMax_radius[b] ); 
  		fprintf(stdout, "\tradius = %.16f = %d pixels = %f %% of ImageWidth\n", BasinRadius[b] , (int) (BasinRadius[b]/PixelWidth), BasinRadius[b]/ (ZxMax-ZxMin)); // 
  		fprintf(stdout, "\tr2 = %.16f \n", r2[b] );
  		fprintf(stdout, "\n\n");		
		}
	

}


void PrintBasinsInfo(){

	double b1;
	double b2;
	double b3;
	double u;
	double b;
	unsigned long long int sum = uBasin0+uBasin1+uBasin2;
	
	
	PrintBasinsData();
	
	
	
	
	b1 =  (double) uBasin0/ iSize;
	b2 =  (double) uBasin1/ iSize;
	b3 =  (double) uBasin2/ iSize;
	b = b1+b2+b3;
	
	if ( sum==iSize){
		fprintf(stdout, "Image = %llu pixels \n", iSize);
		fprintf(stdout, "\tBasin0 \t= %llu pixels \t= %.2f  \n", uBasin0, b1);
		fprintf(stdout, "\tBasin1 \t= %llu pixels \t= %.2f \n", uBasin1, b2);
		fprintf(stdout, "\tBasin2 \t= %llu pixels \t= %.2f \n", uBasin2, b3);
		// fprintf(stdout, "\tsum    \t= %llu pixels \t= %.16f \n", uBasin0+uBasin1+uBasin2, b);
		}
	
		
	if (uUnknown>0 || b<1.0) {
		u =  (double) uUnknown/ iSize;	
		fprintf(stdout, "\n\n");
		fprintf(stdout, "\tUknown \t= %llu pixels \t= %.2f \n", uUnknown, u);
		fprintf(stdout, "\tLost   \t= %llu pixels \t= %.2f \n", iSize - sum, 1.0 - b);
		}	
	fprintf(stdout, "\n\n");		
	
	
	
}

int PrintProgramInfo ()
{


  // display info messages
  fprintf (stdout, "Numerical approximation of Julia set for f(z) =  \n");
  //printf ("parameter C = ( %.16f ; %.16f ) \n", creal (C), cimag (C));
  

  fprintf (stdout, "Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  fprintf (stdout, "PixelWidth = %.16f \n", PixelWidth);
  //fprintf ("AR = %.16f = %f *PixelWidth = %f %% of ImageWidth \n", AR, AR / PixelWidth, AR / ZxMax - ZxMin);



  // image corners in world coordinate
  // center and PlaneRadius
  // center and zoom
  // GradientRepetition
  fprintf (stdout, "Maximal number of iteeations = iterMax = %d \n", IterMax);
  fprintf (stdout, "PlaneAspectRatio of image  = %f ; it should be 1.000 ...\n", plane_ratio);
  //




  return 0;
}

// *******************************************************************************************
// ********************************** plane 1****************************
// *********************************************************************************************

int SetPlane(complex double center, double PlaneRadius, double AspectRatio){

  ZxMin = creal(center) - PlaneRadius*AspectRatio;	
  ZxMax = creal(center) + PlaneRadius*AspectRatio;	//0.75;
  ZyMin = cimag(center) - PlaneRadius;	// inv
  ZyMax = cimag(center) + PlaneRadius;	//0.7;
  return 0;

}



// Check Orientation of z-plane image : mark first quadrant of complex plane 
// it should be in the upper right position
// uses global var :  ...
int CheckZPlaneOrientation(unsigned char A[] )
{
 
  double Zx, Zy; //  Z= Zx+ZY*i;
  unsigned i; /* index of 1D array */
  unsigned int ix, iy;		// pixel coordinate 
	
  fprintf(stdout, "compute image CheckOrientation\n");
  // for all pixels of image 
#pragma omp parallel for collapse(2) schedule(dynamic) private(ix,iy, i, Zx, Zy) shared(A, ixMax , iyMax) 
  for (iy = iyMin; iy <= iyMax; ++iy){
    //fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    for (ix = ixMin; ix <= ixMax; ++ix){
      // from screen to world coordinate 
      Zy = GiveZy(iy);
      Zx = GiveZx(ix);
      i = Give_i(ix, iy); /* compute index of 1D array from indices of 2D array */
      if (Zx>0 && Zy>0) A[i]=255-A[i];   // check the orientation of Z-plane by marking first quadrant */
    }
  }
   
   
  return 0;
}







// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************



/* 

is it possible to adjust AR so that level curves in interior have figure 8?

find such AR for internal LCM/J and LSM that level curves croses critical point and it's preimages
for attracting ( also weakly attracting = parabolic) dynamics

it may fail 
* if one itePlaneAspectRation is bigger then smallest distance between periodic point zp and Julia set
* if critical point is attracted by another cycye ( then change periodic point zp)

Made with help of Claude Heiland-Allen


  attracting radius of circle around finite attractor
  there are 2 basins so  
  
  
  It would have to be done separately in each basin.

A suggested method:

For each critical point, forward iterate to find an attractor and then thin out the critical point set to only one per basin by removing all but one that converge to a common attractor, for each attractor.
For each pixel, calculate a smoothed iteeation value (e.g. using the methods in my GVC coloring ucl) and note which basin it is in.
For each critical point in the reduced set, calculate a smoothed iteration value using the same method as in step 2.
For each pixel, subtract from its smoothed iteration value the one found in step 3 for the critical point that shares its basin. Note that the critical point itself, if inside the image rectangle and in a pixel center, will end up with zero and some points may end up with negative values.
The level set boundaries you want will now be the boundaries where the sign or the integer part of the modified smoothed iteration value changes. In particular, the -0.something to +0.something transition will pass through the critical point, the n.something to (n+1).something transitions for nonnegative n will pass through its images, and the same for negative n will pass through its preimages.

  pauldebrot 
  https://fractalforums.org/programming/11/crtical-points-and-level-curves/4323/msg29514#new
  

*/

double ComputeBasinRadius(int basin_number){


	double iter_Max = iterMax_radius[basin_number];
	
	complex double z = z_cr[basin_number]; // initial point z0 = criical point 
	complex double za = z_a[basin_number];
  	double iter;
  	int p;
  	int pMax = periods[basin_number];
  	
  	double r;// 
  	
  	if ( basin_number==2) 
  		{ return (5*PixelWidth*iWidth/2000.0) ;} // adjust first number  
  		
  	// iterate critical point
	for (iter=0; iter< iter_Max; iter+=1.0 ){
		for (p=0; p< pMax; ++p )
  			{z = f(z); }}// forward iteration
  	  				 
  			
  	// check distance between zn = f^n(zcr) and periodic point zp
	r = cabs(za - z);
	//fprintf(stdout, "basin %d radius  = %f = %d * pixeWidth = %f %% of ImageWidth\n", basin_number, r, (int) (r/PixelWidth), r/ (ZxMax-ZxMin));
  	
  
  
 	// use it as a AR
 	return r;
	
	
}



void BasinsSetup(){

	int b; // basin number
	int bMax = BasinsNumber;
	
	for (b=0; b< bMax; ++b ){
	
	
		//basins[b].period = (b<2) ? 2 : 1; // condition ? true-statement : false-statement;
  		//basins[b].critical = z_cr[b];
  		//basins[b].attractor = z_a[b];
  		iterMax_radius[b] = 10;
		BasinRadius[b] = ComputeBasinRadius(b);
		r2[b] = BasinRadius[b] * BasinRadius[b];
		}
	

}








int setup ()
{

  	fprintf (stderr, "setup start\n");






  	/* 2D array ranges */

  	iWidth = iHeight* PlaneAspectRatio ;
  	iSize = iWidth * iHeight;	// size = number of points in array 
  	// iy
  	iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  	//ix

  	ixMax = iWidth - 1;

  	/* 1D array ranges */
  	// i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  	iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  
  	SetPlane( center, PlaneRadius,  PlaneAspectRatio );	
  	/* Pixel sizes */
  	PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  	PixelHeight = (ZyMax - ZyMin) / iyMax;
  	// check
  	plane_ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...
  
  
  
	BasinsSetup();
  
	/* create dynamic 1D arrays for colors ( shades of gray ) */
  	data = malloc (iSize * sizeof (unsigned char));

  	edge = malloc (iSize * sizeof (unsigned char));
  	if (data == NULL || edge == NULL)
    	{
      		fprintf (stderr, " Could not allocate memory");
      		return 1;
    	}
  

	fprintf (stderr, " end of setup \n");

  	return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int end ()
{


  	fprintf (stderr, " allways free memory (deallocate )  to avoid memory leaks \n");	// https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
  	free (data);
  	free(edge);


  	PrintProgramInfo ();
  	PrintBasinsInfo();
  	PrintCInfo ();
	return 0;

}







// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int main ()
{
  	setup ();
  
  
   

   
   	DrawImage (data, Fatou_ab);	 
   	SaveArray2PGMFile (data,  "Fatou_ab" , "Fatou_ab ");
    
    
    
    ComputeBoundaries(data,edge);
    SaveArray2PGMFile (edge,  "Fatou_ab_LCM" , "Fatou_ab_LCM ");
    
    CopyBoundaries(edge, data);
    SaveArray2PGMFile (data,  "Fatou_ab_LSCM" , "Fatou_ab_LSCM");
    
    
    DrawImage (data, Fatou_abi);	 
    SaveArray2PGMFile (data,  "Fatou_abi" , "Fatou_abi ");
    
    
    ComputeBoundaries(data,edge);
    SaveArray2PGMFile (edge,  "Fatou_abi_LCM" , "Fatou_abi_LCM ");
    
    CopyBoundaries(edge, data);
    SaveArray2PGMFile (data,  "Fatou_abi_LSCM" , "Fatou_abi_LSCM");
    
    
    //DrawAttractors(zpa, zpb, 2, 14, data);
   //SaveArray2PGMFile (data,  "Fatou_abi_LSCM_zp" , "Fatou_abi_LSCM_zp");
     
    DrawForwardOrbit(z_cr[0], 100, 8, data);
    DrawForwardOrbit(z_cr[1], 100, 8, data);
    SaveArray2PGMFile (data,  "Fatou_abi_LSCM_zp_cr" , "Fatou_abi_LSCM_zp_cr");
    
   
    
   
    
  
  
    DrawImage (data, LSM);	
    SaveArray2PGMFile (data,  "LSM" , "LSM");
  
    ComputeBoundaries(data,edge);
    SaveArray2PGMFile (edge,  "LCM" , "LCM ");
    
    CopyBoundaries(edge, data);
    SaveArray2PGMFile (data,  "LSCM" , "LSCM");
    
    
    PlotBigPoint(z_cr[0],8,edge);
    PlotBigPoint(z_cr[1],8, edge);
    SaveArray2PGMFile (edge,  "LCM_cr" , "LCM + critical points");
   
   /*
    DrawAttractors(zpa, zpb, 2, 14, edge);
    SaveArray2PGMFile (edge,  "LCM_zp_cr" , "LCM + critical points");
    
     DrawForwardOrbit(Basin1.critical, 100, 8, data);
    DrawForwardOrbit(Basin2.critical, 100, 8, data);
    SaveArray2PGMFile (edge,  "LCM_zp_cr_cro" , "LCM + critical orbit + periodic points");
    
       
    
    DrawImage (data, LSM_m);	 
    SaveArray2PGMFile (data,  "LSM_m" , "LSM_m ");
  
    ComputeBoundaries(data,edge);
    SaveArray2PGMFile (edge,  "LCM_m" , "LCM_m ");
  
    CopyBoundaries(edge, data);
    SaveArray2PGMFile (data,  "LSCM_m" , "LSCM m");

  
   DrawImage (data, DEM);	// first 
    SaveArray2PGMFile (data,  "DEM" , "DEM ");
    */

  
  end ();

  return 0;
}

bash source code

#!/bin/bash 
 
# script file for BASH 
# which bash
# save this file as d.sh
# chmod +x d.sh
# ./d.sh
# checked in https://www.shellcheck.net/




printf "make pgm files \n"
gcc d.c -lm -Wall -march=native -fopenmp

if [ $? -ne 0 ]
then
    echo ERROR: compilation failed !!!!!!
    exit 1
fi


export  OMP_DISPLAY_ENV="TRUE"
printf "display OMP info \n"

printf "run the compiled program\n"
time ./a.out > a.txt

export  OMP_DISPLAY_ENV="FALSE"

printf "change Image Magic settings\n"
export MAGICK_WIDTH_LIMIT=100MP
export MAGICK_HEIGHT_LIMIT=100MP

printf "convert all pgm files to png using Image Magic v 6 convert \n"
# for all pgm files in this directory
for file in *.pgm ; do
  # b is name of file without extension
  b=$(basename "$file" .pgm)
  # convert  using ImageMagic
  convert "${b}".pgm -resize 2000x2000 "${b}".png
  echo "$file"
done


printf "delete all pgm files \n"
rm ./*.pgm

 
echo OK

printf "info about software \n"
bash --version
make -v
gcc --version
convert -version
convert -list resource
# end


make

all: 
	chmod +x d.sh
	./d.sh


Tu run the program simply

 make


text output

chmod +x d.sh
./d.sh
make pgm files 
display OMP info 
run the compiled program

OPENMP DISPLAY ENVIRONMENT BEGIN
  _OPENMP = '201511'
  OMP_DYNAMIC = 'FALSE'
  OMP_NESTED = 'FALSE'
  OMP_NUM_THREADS = '8'
  OMP_SCHEDULE = 'DYNAMIC'
  OMP_PROC_BIND = 'FALSE'
  OMP_PLACES = ''
  OMP_STACKSIZE = '0'
  OMP_WAIT_POLICY = 'PASSIVE'
  OMP_THREAD_LIMIT = '4294967295'
  OMP_MAX_ACTIVE_LEVELS = '1'
  OMP_CANCELLATION = 'FALSE'
  OMP_DEFAULT_DEVICE = '0'
  OMP_MAX_TASK_PRIORITY = '0'
  OMP_DISPLAY_AFFINITY = 'FALSE'
  OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A'
  OMP_ALLOCATOR = 'omp_default_mem_alloc'
  OMP_TARGET_OFFLOAD = 'DEFAULT'
OPENMP DISPLAY ENVIRONMENT END
setup start
 end of setup 
compute image 0 
 9999 from 9999 
 allways free memory (deallocate )  to avoid memory leaks 

real	1m40,647s
user	12m24,839s
sys	0m5,966s
change Image Magic settings
convert all pgm files to png using Image Magic v 6 convert 
2.0_10000_Fatou_ab_LCM.pgm
2.0_10000_Fatou_ab_LSCM.pgm
2.0_10000_Fatou_ab.pgm
delete all pgm files 
OK
info about software 
GNU bash, wersja 5.1.4(1)-release (x86_64-pc-linux-gnu)
Copyright (C) 2020 Free Software Foundation, Inc.
Licencja GPLv3+: GNU GPL wersja 3 lub późniejsza <http://gnu.org/licenses/gpl.html>

To oprogramowanie jest wolnodostępne; można je swobodnie zmieniać i rozpowszechniać.
Nie ma ŻADNEJ GWARANCJI w granicach dopuszczanych przez prawo.
GNU Make 4.3
Ten program został zbudowany dla systemu x86_64-pc-linux-gnu
Copyright (C) 1988-2020 Free Software Foundation, Inc.
Licencja GPLv3+: GNU GPL wersja 3 lub nowsza <http://gnu.org/licenses/gpl.html>
To oprogramowanie jest wolnodostępne: można je swobodnie zmieniać i rozpowszechniać.
Nie ma ŻADNEJ GWARANCJI w zakresie dopuszczalnym przez prawo.
gcc (Ubuntu 10.3.0-1ubuntu1) 10.3.0
Copyright (C) 2020 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Version: ImageMagick 6.9.11-60 Q16 x86_64 2021-01-25 https://imagemagick.org
Copyright: (C) 1999-2021 ImageMagick Studio LLC
License: https://imagemagick.org/script/license.php
Features: Cipher DPC Modules OpenMP(4.5) 
Delegates (built-in): bzlib djvu fftw fontconfig freetype heic jbig jng jp2 jpeg lcms lqr ltdl lzma openexr pangocairo png tiff webp wmf x xml zlib
Resource limits:
  Width: 1MP
  Height: 1MP
  List length: unlimited
  Area: 128MP
  Memory: 256MiB
  Map: 512MiB
  Disk: 10GiB
  File: 768
  Thread: 8
  Throttle: 0
  Time: unlimited




File 2.0_10000_Fatou_ab.pgm saved . Comment = Julia set  f(z)=z2/(z9-z+0.025)  Location by Michael Becker Fatou_ab  
File 2.0_10000_Fatou_ab_LCM.pgm saved . Comment = Julia set  f(z)=z2/(z9-z+0.025)  Location by Michael Becker Fatou_ab_LCM  
File 2.0_10000_Fatou_ab_LSCM.pgm saved . Comment = Julia set  f(z)=z2/(z9-z+0.025)  Location by Michael Becker Fatou_ab_LSCM 
Numerical approximation of Julia set for F(z) =  ) 
Image Width = 4.000000 in world coordinate
PixelWidth = 0.0004000400040004 
Maximal number of iterations = iterMax = 100000 
ratio of image  = 1.000000 ; it should be 1.000 ...


Basin 0 data 
	period = 2 
	critical point = 0.7179335862723750+0.3001510209321582*I
	attractor = 0.4673334948710465+0.1476668526650723*I
	iterMax_radius = 10 
	radius = 0.0500940268082666 = 125 pixels = 0.012524 % of ImageWidth
	r2 = 0.0025094115218673 




Basin 1 data 
	period = 2 
	critical point = 0.7179335862723750-0.3001510209321582*I
	attractor = 0.4673334948710465-0.1476668526650723*I
	iterMax_radius = 10 
	radius = 0.0500940268082666 = 125 pixels = 0.012524 % of ImageWidth
	r2 = 0.0025094115218673 




Basin 2 data 
	period = 1 
	critical point = 0.0000000000000000+0.0000000000000000*I
	attractor = 0.0000000000000000+0.0000000000000000*I
	iterMax_radius = 10 
	radius = 0.0100010001000100 = 25 pixels = 0.002500 % of ImageWidth
	r2 = 0.0001000200030004 


Image = 100000000 pixels 
	Basin0 	= 23411650 pixels 	= 0.23  
	Basin1 	= 23411650 pixels 	= 0.23 
	Basin2 	= 53176700 pixels 	= 0.53 

gcc version: 10.3.0
__STDC__ = 1
__STDC_VERSION__ = 201710
c dialect = C18

Rerefences

  1. Some Julia sets 4 by Michael Becker, 10/2004. Last modification: 10/2004.
  2. fractalforums.org : rational-function
  3. Some Julia sets 4 by Michael Becker, 10/2004. Last modification: 10/2004.

Captions

Julia set for map f(z)=z2/(z9-z+0.025)

Items portrayed in this file

depicts

27 July 2021

image/png

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:23, 27 July 2021Thumbnail for version as of 16:23, 27 July 20212,000 × 2,000 (540 KB)Soul windsurferUploaded own work with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file:

Metadata