Jump to content

Fukuyama coupling

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by BiomolecularGraphics4All (talk | contribs) at 15:25, 30 July 2016 (Annotate this page with a Reactionbox.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Fukuyama coupling
Named after Tohru Fukuyama
Reaction type Coupling reaction
Identifiers
Organic Chemistry Portal fukuyama-coupling

The Fukuyama coupling is a coupling reaction taking place between a thioester and an organozinc halide in the presence of a palladium catalyst. The reaction product is a ketone. This reaction was discovered by Tohru Fukuyama et al. in 1998.[1] Advantages are high chemoselectivity, mild reaction conditions and the use of less-toxic reagents.[2]

Fukuyama coupling

One advantage of this method is that the reaction stops at the ketone and does not proceed to a tertiary alcohol. In addition, the protocol is compatible with functional groups such as ketones, acetates, sulfides, aromatic bromides, chlorides and aldehydes.

Original Fukuyama 1998 reaction

The reaction (interrupted) has been used in the synthesis of biotin [3]

Biotin total synthesis

This reaction was preceded by the conceptually related Fukuyama reduction.

References

  1. ^ Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. (1998). "A novel ketone synthesis by a palladium-catalyzed reaction of thiol esters and organozinc reagents". Tetrahedron Letters. 39 (20): 3189–3192. doi:10.1016/S0040-4039(98)00456-0.
  2. ^ Mori, Y.; Seki, M. (2007). "SYNTHESIS OF MULTI-FUNCTIONALIZED KETONES THROUGH THE FUKUYAMA COUPLING REACTION CATALYZED BY PEARLMAN'S CATALYST: PREPARATION OF ETHYL 6-OXOTRIDECANOATE (Tridecanoic acid, 6-oxo-, ethyl ester)" (PDF). Organic Syntheses. 84: 285–294{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 11, pp. 281–288.
  3. ^ Shimizu, T.; Seki, M. (2000). "Facile synthesis of (+)-biotin via Fukuyama coupling reaction". Tetrahedron Letters. 41 (26): 5099–5101. doi:10.1016/S0040-4039(00)00781-4.