Jump to content

Gian Francesco Giudice

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Bender the Bot (talk | contribs) at 11:58, 27 November 2016 (External links: clean up; http→https for YouTube using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Gian Francesco Giudice
Born (1961-01-25) January 25, 1961 (age 63)
NationalityItalian
Alma materUniversity of Padua
International School for Advanced Studies
Scientific career
FieldsPhysics
InstitutionsCERN
INFN
University of Texas at Austin
Fermilab
Doctoral advisorRiccardo Barbieri

Gian Francesco Giudice (born January 25, 1961) is an Italian theoretical physicist working at CERN in particle physics and cosmology.

Academic career

After graduating in physics from the University of Padua in 1984, Giudice obtained in 1988 his PhD in theoretical physics from the International School for Advanced Studies in Trieste. Between 1988 and 1990 he was Research Associate at the Fermi National Accelerator Laboratory near Chicago. Between 1990 and 1992 he was Research Fellow in the Physics Department of the University of Texas at Austin, in the group led by Steven Weinberg. After being employed by the Istituto Nazionale di Fisica Nucleare of Italy, in 1993 he moved to CERN, where he is currently the Head of the Theoretical Physics Department. Academician of the Istituto Veneto di Scienze, Lettere ed Arti [1] and of Accademia Galileiana, he has been awarded the 2013 Jacques Solvay Chair in Physics.[2]

Research

The research activity of Giudice mainly deals with the formulation of new theories that extend our present knowledge of the particle world toward even smaller distances. He is also studying how these theories can be applied to cosmology in order to describe the early stages of the history of our universe. His most notable results are in the areas of supersymmetry, extra dimensions, electroweak physics, collider physics, dark matter, and leptogenesis. Together with physicist Riccardo Barbieri, he proposed[3] a widely used criterion to test the degree of naturalness of a supersymmetric theory that achieves electroweak symmetry breaking. He co-invented the Giudice-Masiero mechanism,[4] which is the leading explanation for the Mu problem of supergravity. He has made fundamental contributions to the construction of Gauge Mediation,[5] and he is a co-author of the first papers proposing Anomaly Mediation[6] and Split Supersymmetry.[7] He is one of the proponents of a method[8] to compute quantum effects in theories with broken supersymmetry through analytic continuation into superspace. Well known and much used in LHC studies is his method[9] to describe graviton interactions in theories with extra spatial dimensions. He is also one of the originators of the idea of Minimal Flavor Violation,[10] a paradigm to characterize the effects of flavor transitions in new theories of particle physics. After the discovery of the Higgs boson, he computed the probability that the Higgs vacuum undergoes quantum tunnelling, finding the surprising result that the universe is in a critical state which will eventually end in a cosmic collapse.[11]

Support of particle accelerator projects

Giudice has played an active role in studying the physics potential of particle accelerators, supporting and advocating several new projects at CERN and in other laboratories worldwide. He has coordinated study groups for LEP,[12] Tevatron,[13] the Neutrino Factory,[14] LHC,[15] CLIC,[16] SuperB[17] and has participated in the committee reviewing the safety of collisions at the LHC.[18] He is a member of the LHC Experiments Committee (LHCC), the body that reviews the activity of the experimental groups at the LHC, and of the European Committee for Future Accelerators (ECFA), the advisory body for long-range planning of high-energy facilities in Europe.

Science popularization

Besides his research work, Giudice is active in popularization of science and outreach, often giving public lectures on particle physics and related topics, and participating in science festivals and other events. He is the author of A Zeptospace Odyssey,[19] a popular-science book on the physics of the LHC, which has been finalist for the 2012 Galileo Literary Prize for popular science and the Prize Pianeta Galileo 2013. The book, originally written in English, has been translated into Italian,[20] German,[21] French,[22] Spanish,[23] and a Korean translation is in progress.

References

  1. ^ CERN Courier, vol. 51, issue 6, July/August 2011..
  2. ^ CERN Courier, vol. 53, issue 1, January/February 2013..
  3. ^ R. Barbieri; G. F. Giudice (1988). "Upper Bounds on Supersymmetric Particle Masses". Nucl. Phys. B. 306: 63. Bibcode:1988NuPhB.306...63B. doi:10.1016/0550-3213(88)90171-X.
  4. ^ G. F. Giudice; A. Masiero (1988). "A Natural Solution to the Mu Problem in Supergravity Theories". Phys. Lett. B. 206: 480. Bibcode:1988PhLB..206..480G. doi:10.1016/0370-2693(88)91613-9.
  5. ^ G. F. Giudice; R. Rattazzi (1999). "Theories with gauge mediated supersymmetry breaking". Phys. Rep. 322: 419. arXiv:hep-ph/9801271. Bibcode:1999PhR...322..419G. doi:10.1016/S0370-1573(99)00042-3.
  6. ^ L. Randall; R. Sundrum (1999). "Out of this world supersymmetry breaking". Nucl. Phys. B. 557: 79. arXiv:hep-th/9810155. Bibcode:1999NuPhB.557...79R. doi:10.1016/S0550-3213(99)00359-4.
    G. F. Giudice; M. A. Luty; H. Murayama; R. Rattazzi (1998). "Gaugino mass without singlets". JHEP. 9812: 027. arXiv:hep-ph/9810442. Bibcode:1998JHEP...12..027G. doi:10.1088/1126-6708/1998/12/027.
  7. ^ N. Arkani-Hamed; S. Dimopoulos (2006). "Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC". JHEP. 0506: 073. arXiv:hep-th/0405159. Bibcode:2005JHEP...06..073A. doi:10.1088/1126-6708/2005/06/073.
    G. F. Giudice; A. Romanino (2004). "Split supersymmetry". Nucl. Phys. B. 699: 65. arXiv:hep-ph/0406088. Bibcode:2005NuPhB.706..487G. doi:10.1016/j.nuclphysb.2004.11.048.
    N. Arkani-Hamed; S. Dimopoulos; G. F. Giudice; A. Romanino (2005). "Aspects of split supersymmetry". Nucl. Phys. B. 709: 3. arXiv:hep-ph/0409232. Bibcode:2005NuPhB.709....3A. doi:10.1016/j.nuclphysb.2004.12.026.
  8. ^ G. F. Giudice; R. Rattazzi (1998). "Extracting supersymmetry breaking effects from wave function renormalization". Nucl. Phys. B. 511: 25. arXiv:hep-ph/9706540. Bibcode:1998NuPhB.511...25G. doi:10.1016/S0550-3213(97)00647-0.
    N. Arkani-Hamed; G. F. Giudice; M. A. Luty; R. Rattazzi (1998). "Supersymmetry breaking loops from analytic continuation into superspace". Phys. Rev. D. 58: 115005. arXiv:hep-ph/9803290. Bibcode:1998PhRvD..58k5005A. doi:10.1103/PhysRevD.58.115005.
  9. ^ G. F. Giudice; R. Rattazzi; J. D. Wells (1999). "Quantum gravity and extra dimensions at high-energy colliders". Nucl. Phys. B. 544: 3. arXiv:hep-ph/9811291. Bibcode:1999NuPhB.544....3G. doi:10.1016/S0550-3213(99)00044-9.
  10. ^ G. D'Ambrosio; G. F. Giudice; G. Isidori; A. Strumia (2002). "Minimal flavor violation: an effective field theory approach". Nucl. Phys. B. 645: 155. arXiv:hep-ph/9811291. Bibcode:2002NuPhB.645..155D. doi:10.1016/S0550-3213(02)00836-2.
  11. ^ G. Degrassi; S. Di Vita; J. Elias-Miro; J. R. Espinosa; G. F. Giudice; G. Isidori; A. Strumia (2012). "Higgs mass and vacuum stability in the Standard Model at NNLO". JHEP. 1208: 098. arXiv:1205.6497. Bibcode:2012JHEP...08..098D. doi:10.1007/JHEP08(2012)098.
  12. ^ G. F. Giudice; M. L. Mangano; G. Ridolfi; R. Ruckl; et al. (1996). "Search for new physics". Physics at LEP2: eds. G. Altarelli, T. Sjostrand, F. Zwirner, CERN 95/06. arXiv:hep-ph/9602207. Bibcode:1996hep.ph....2207G.
  13. ^ S. Ambrosanio et al. [MSSM Working Group Collaboration] (2000). "Report of the beyond the MSSM subgroup for the Tevatron Run II SUSY / Higgs workshop". arXiv:hep-ph/0006162.
  14. ^ J. Aysto; et al. (2004). "Report of the Stopped Muons Working Group for the ECFA-CERN study on Neutrino Factory and Muon Storage Rings at CERN". arXiv:hep-ph/0109217. {{cite arXiv}}: Cite has empty unknown parameter: |journal= (help)
    A. Bandyopadhyay et al. [ISS Physics Working Group Collaboration] (2009). "Physics at a future Neutrino Factory and super-beam facility". Rept. Prog. Phys. 72: 106201. arXiv:0710.4947. Bibcode:2009RPPh...72j6201B. doi:10.1088/0034-4885/72/10/106201.
  15. ^ M. Raidal; et al. (2008). "Report of WG3 of the workshop "Flavour in the era of the LHC"". Eur. Phys. J. C. 57: 13. arXiv:0801.1826. Bibcode:2008EPJC...57...13R. doi:10.1140/epjc/s10052-008-0715-2.
  16. ^ E. Accomando et al. [CLIC Physics Working Group Collaboration] (2004). "Physics at the CLIC multi-TeV linear collider". arXiv:hep-ph/0412251.
    CLIC Conceptual Design Report (2012).
  17. ^ M. Bona; et al. (2007). "SuperB: A High-Luminosity Asymmetric e+ e- Super Flavor Factory. Conceptual Design Report". arXiv:0709.0451.
  18. ^ J. R. Ellis; G. F. Giudice; M. L. Mangano; I. Tkachev; U. Wiedemann (2008). "Review of the Safety of LHC Collisions". J. Phys. G. 35: 115004. arXiv:0806.3414. Bibcode:2008JPhG...35k5004E. doi:10.1088/0954-3899/35/11/115004.
  19. ^ G. F. Giudice, A Zeptospace Odyssey: A Journey into the Physics of the LHC, Oxford University Press, Oxford 2010, ISBN 978-0-19-958191-7.
  20. ^ G. F. Giudice, Odissea nello zeptospazio: un viaggio nella fisica dell'LHC, Springer-Verlag Italia, Milano 2010, ISBN 978-88-470-1630-9.
  21. ^ G. F. Giudice, Odyssee im Zeptoraum: Eine Reise in die Physik des LHC, Springer-Verlag, Berlin Heidelberg 2012, ISBN 978-3-642-22394-5.
  22. ^ G. F. Giudice, L'Odyssée du Zeptoespace: Un voyage au cœur de la physique du LHC, Presses polytechniques et universitaires romandes, Lausanne 2013, ISBN 978-2-88-074998-9.
  23. ^ G. F. Giudice, Odisea en el zeptoespacio, Jot Down Books, Madrid 2013, ISBN 978-84-940939-1-3.