Jump to content

Glicksberg's theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 128.12.253.5 (talk) at 21:27, 3 August 2016. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In the study of zero sum games, Glicksberg's theorem (also Glicksberg's existence theorem) is a result that shows certain games have a minimax value .[1]

If A and B are compact sets, and K is an upper semicontinuous or lower semicontinuous function on , then

where f and g run over Borel probability measures on A and B.

The theorem is useful if f and g are interpreted as mixed strategies of two players in the context of a continuous game. If the payoff function K is upper semicontinuous, then the game has a value.

The continuity condition may not be dropped: see example of a game with no value.

References

  1. ^ Sion, Maurice; Wolfe, Phillip (1957), "On a game without a value", in Dresher, M.; Tucker, A. W.; Wolfe, P. (eds.), Contributions to the Theory of Games III, Annals of Mathematics Studies 39, Princeton University Press, pp. 299–306, ISBN 9780691079363