Jump to content

High Five cells

From Wikipedia, the free encyclopedia
(Redirected from High five cells)

High Five (BTI-Tn-5B1-4) is an insect cell line that originated from the eggs of the cabbage looper, Trichoplusia ni.[1] It was developed by the Boyce Thompson Institute for Plant Research.

High Five cells have become one of the most commonly used cell lines for recombinant protein expression using baculovirus or transfection, and have been demonstrated to express more recombinant protein than other lepidopteran cell lines, such as Sf9 cells.[2][3][4][5][6][7][8] The High Five cells have been used to produce the VLP-based HPV vaccine Cervarix.[9]

They can be grown in the absence of serum, and can be cultured in a loose attached state or in suspension[10] High Five cells produce abundant microRNAs (miRNAs), small interfering RNAs (siRNAs), and PIWI-interacting RNAs (piRNAs), making it suitable to study all three types of small silencing RNAs.[11]

The High Five cell line, like other cell lines,[12] has been found to host a non-pathogenic adventitious alphanodavirus. Researchers at the Boyce Thompson Institute were able to isolate virus-free sub-clones, named Tnao38[13][14] and Tnms42.[15]

References

[edit]
  1. ^ Wickham TJ, Davis T, Granados RR, Shuler ML, Wood HA (1992). "Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system". Biotechnol. Prog. 8 (5): 391–396. doi:10.1021/bp00017a003. PMID 1369220. S2CID 41111655.
  2. ^ Davis TR, Trotter KM, Granados RR, Wood HA (1992). "Baculovirus expression of alkaline phosphatase as a reporter gene for evaluation of production, glycosylation and secretion". Bio/Technology. 10 (10): 1148–1150. doi:10.1038/nbt1092-1148. PMID 1368794. S2CID 5978915.
  3. ^ Wickham TJ, Nemerow GR (1993). "Optimization of growth methods and recombinant protein production in BTI-Tn-5B1-4 insect cells using the baculovirus expression system". Biotechnol. Prog. 9 (1): 25–30. doi:10.1021/bp00019a004. PMID 7764044. S2CID 21157206.
  4. ^ Granados RR, Guoxun L, Derksen AC, McKenna KA (1994). "A New Insect Cell Line from Trichoplusia ni (BTI-Tn-5B1-4) Susceptible to Trichoplusia ni Single Enveloped Nuclear Polyhedrosis". Virus. J. Invertebr. Pathol. 64: 260–266. doi:10.1016/s0022-2011(94)90400-6.
  5. ^ Lai, Chia-Chun; Cheng, Yu-Chieh; Chen, Pin-Wen; Lin, Ting-Hui; Tzeng, Tsai-Teng; Lu, Chia-Chun; Lee, Min-Shi; Hu, Alan Yung-Chih (December 2019). "Process development for pandemic influenza VLP vaccine production using a baculovirus expression system". Journal of Biological Engineering. 13 (1): 78. doi:10.1186/s13036-019-0206-z. ISSN 1754-1611. PMC 6813129. PMID 31666806.
  6. ^ Krammer, Florian; Schinko, Theresa; Palmberger, Dieter; Tauer, Christopher; Messner, Paul; Grabherr, Reingard (July 2010). "Trichoplusia ni cells (High FiveTM) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines". Molecular Biotechnology. 45 (3): 226–234. doi:10.1007/s12033-010-9268-3. ISSN 1073-6085. PMC 4388404. PMID 20300881.
  7. ^ Krammer, Florian; Nakowitsch, Sabine; Messner, Paul; Palmberger, Dieter; Ferko, Boris; Grabherr, Reingard (January 2010). "Swine-origin pandemic H1N1 influenza virus-like particles produced in insect cells induce hemagglutination inhibiting antibodies in BALB/c mice". Biotechnology Journal. 5 (1): 17–23. doi:10.1002/biot.200900267. PMC 4388400. PMID 20041443.
  8. ^ Wilde, Monika; Klausberger, Miriam; Palmberger, Dieter; Ernst, Wolfgang; Grabherr, Reingard (April 2014). "Tnao38, high five and Sf9—evaluation of host–virus interactions in three different insect cell lines: baculovirus production and recombinant protein expression". Biotechnology Letters. 36 (4): 743–749. doi:10.1007/s10529-013-1429-6. ISSN 0141-5492. PMC 3955137. PMID 24375231.
  9. ^ Schiller, John T.; Castellsagué, Xavier; Villa, Luisa L.; Hildesheim, Allan (August 2008). "An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results". Vaccine. 26 (Suppl 10): K53–K61. doi:10.1016/j.vaccine.2008.06.002. PMC 2631230. PMID 18847557.
  10. ^ Invitrogen (31 March 2015). "Cell Lines". Growth and Maintenance of Insect cell lines (PDF). A.0. Thermo Fisher Scientific. Retrieved 2015-11-09.
  11. ^ Fu, Yu; Yang, Yujing; Zhang, Han; Farley, Gwen; Wang, Junling; Quarles, Kaycee A; Weng, Zhiping; Zamore, Phillip D (2018-01-29). "The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology". eLife. 7. doi:10.7554/eLife.31628. ISSN 2050-084X. PMC 5844692. PMID 29376823.
  12. ^ Geisler, Christoph; Jarvis, Donald L. (April 2018). "Adventitious viruses in insect cell lines used for recombinant protein expression". Protein Expression and Purification. 144: 25–32. doi:10.1016/j.pep.2017.11.002. PMC 5826799. PMID 29133148.
  13. ^ Hashimoto, Yoshifumi; Zhang, Sheng; Blissard, Gary W (December 2010). "Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins". BMC Biotechnology. 10 (1): 50. doi:10.1186/1472-6750-10-50. ISSN 1472-6750. PMC 2906426. PMID 20602790.
  14. ^ Hashimoto, Yoshi; Zhang, Sheng; Zhang, Shiying; Chen, Yun-Ru; Blissard, Gary W (December 2012). "Erratum to: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins". BMC Biotechnology. 12 (1): 12. doi:10.1186/1472-6750-12-12. ISSN 1472-6750. PMC 3376038. PMID 22531032.
  15. ^ Koczka, Krisztina; Peters, Philipp; Ernst, Wolfgang; Himmelbauer, Heinz; Nika, Lisa; Grabherr, Reingard (March 2018). "Comparative transcriptome analysis of a Trichoplusia ni cell line reveals distinct host responses to intracellular and secreted protein products expressed by recombinant baculoviruses". Journal of Biotechnology. 270: 61–69. doi:10.1016/j.jbiotec.2018.02.001. PMID 29432775.
[edit]