Hydropower: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 220.233.218.166 (talk) to last revision by Bgwhite (HG)
No edit summary
Line 3: Line 3:
{{Refimprove|date=August 2010}}
{{Refimprove|date=August 2010}}
[[File:SaintAnthonyFalls.jpg|200px|thumb|right|[[Saint Anthony Falls]], [[United States]]; hydropower was used here to mill flour.]]
[[File:SaintAnthonyFalls.jpg|200px|thumb|right|[[Saint Anthony Falls]], [[United States]]; hydropower was used here to mill flour.]]
'''Hydropower''' or '''water power''' is cool coz yolo #SWAG #kyleissocoollike
'''Hydropower''' or '''water power''' is [[power (physics)|power]] derived from the [[energy]] of falling water and running water, which may be harnessed for useful purposes. Since ancient times, hydropower has been used for [[irrigation]] and the operation of various mechanical devices, such as [[watermill]]s, [[sawmill]]s, [[textile]] mills, dock [[crane (machine)|cranes]], domestic [[elevator|lifts]], power houses and [[paint]] making.

Since the early 20th century, the term is used almost exclusively in conjunction with the modern development of [[hydroelectricity|hydro-electric power]], which allowed use of distant energy sources. Another method used to transmit energy used a [[trompe]], which produces compressed air from falling water. Compressed air could then be piped to power other machinery at a distance from the waterfall. Hydro power is a [[renewable energy]] source.

Water's power is manifested in [[hydrology]], by the forces of water on the [[Stream bed|riverbed]] and banks of a river. When a river is in flood, it is at its most powerful, and moves the greatest amount of [[sediment]]. This higher force results in the removal of sediment and other material from the riverbed and banks of the river, locally causing [[erosion]], transport and, with lower flow, [[sedimentation]] downstream.

== History ==
Early uses of waterpower date back to [[Mesopotamia]] and [[ancient Egypt]], where [[irrigation]] has been used since the 4th millennium BC and [[water clock]]s had been used since the early 2nd millennium BC. Other early examples of water power include the [[Qanat]] system in ancient Persia and the [[Turpan water system]] in ancient China.Water clocks had been used since the early 2nd millennium BC.

=== Waterwheels, turbines, and mills ===
In [[History of India|India]], [[water wheel]]s and [[watermill]]s were built; in [[Roman Empire|Imperial Rome]], water powered mills produced flour from grain, and were also used for sawing timber and stone; in China, watermills were widely used since the [[Han Dynasty]]. In [[China]] and the rest of the Far East, hydraulically operated "pot wheel" pumps raised water into irrigation canals.

In 1753, French engineer [[Bernard Forest de Bélidor]] published ''Architecture Hydraulique'' which described vertical- and horizontal-axis hydraulic machines. By the late 19th century, the [[electrical generator]] was developed and could now be coupled with hydraulics.<ref name="doehis">{{cite web|url=http://www1.eere.energy.gov/windandhydro/hydro_history.html|title=History of Hydropower|publisher=U.S. Department of Energy}}</ref> The growing demand for the [[Industrial Revolution]] would drive development as well.<ref name="watenc">{{cite web|title=Hydroelectric Power|url=http://www.waterencyclopedia.com/Ge-Hy/Hydroelectric-Power.html|publisher=Water Encyclopedia}}</ref>

The power of a wave of water released from a tank was used for extraction of metal ores in a method known as [[hushing]]. The method was first used at the [[Dolaucothi]] [[gold mine]] in [[Wales]] from 75 AD onwards, but had been developed in [[Spain]] at such mines as [[Las Medulas]]. Hushing was also widely used in [[Great Britain|Britain]] in the [[Medieval]] and later periods to extract [[lead]] and [[tin]] ores. It later evolved into [[hydraulic mining]] when used during the [[California gold rush]].

At the beginning of the [[Industrial revolution]] in Britain, water was the main source of power for new inventions such as [[Richard Arkwright]]'s [[water frame]].<ref name="kreis">{{Cite web|url=http://www.historyguide.org/intellect/lecture17a.html|title=The Origins of the Industrial Revolution in England|last=Kreis|first=Steven|year=2001|work=The history guide|accessdate=19 June 2010}}</ref> Although the use of water power gave way to steam power in many of the larger mills and factories, it was still used during the 18th and 19th centuries for many smaller operations, such as driving the bellows in small [[blast furnace]]s (e.g. the [[Dyfi Furnace]])<ref>{{Cite web|url=http://www.bbc.co.uk/wales/mid/sites/history/pages/dyfifurnace.shtml|title=Dyfi Furnace|last=Gwynn|first=Osian|work=BBC Mid Wales History|publisher=BBC|accessdate=19 June 2010}}</ref> and [[gristmills]], such as those built at [[Saint Anthony Falls]], which uses the 50-foot (15&nbsp;m) drop in the [[Mississippi River]].

In the 1830s, at the early peak in U.S. [[canal]]-building, hydropower provided the energy to transport [[barge]] traffic up and down steep hills using [[inclined plane railroad]]s. As railroads overtook canals for transportation, canal systems were modified and developed into hydropower systems; the [[history of Lowell, Massachusetts]] is a classic example of commercial development and industrialization, built upon the availability of water power.

Technological advances had moved the open water wheel into an enclosed turbine. In 1848 [[James B. Francis]], while working as head engineer of Lowell's Locks and Canals company, improved on these designs to create a turbine with 90% efficiency. He applied scientific principles and testing methods to the problem of turbine design. His mathematical and graphical calculation methods allowed confident design of high efficiency turbines to exactly match a site's specific flow conditions. The [[Francis turbine|Francis reaction turbine]] is still in wide use today. In the 1870s, deriving from uses in the California mining industry, [[Lester Allan Pelton]] developed the high efficiency [[Pelton wheel|Pelton wheel impulse turbine]], which utilized hydropower from the high head streams characteristic of the mountainous California interior.

=== Hydraulic power-pipe networks ===
[[Hydraulic power network]]s also developed, using pipes to carrying pressurized water and transmit mechanical power from the source to end users elsewhere locally; the power source was normally a head of water, which could also be assisted by a pump. These were extensive in [[Victorian era|Victorian]] cities in the [[United Kingdom]]. A hydraulic power network was also developed in [[Geneva]], [[Switzerland]]. The world famous [[Jet d'Eau]] was originally designed as the over-pressure relief valve for the network.<ref name=geneva>[http://www.geneve-tourisme.ch/?rubrique=0000000172 Jet d'eau (water foutain)] on [http://www.geneve-tourisme.ch Geneva Tourism]</ref>

=== Compressed air hydro ===
Where there is a plentiful head of water it can be made to generate [[compressed air]] directly without moving parts. In these designs, a falling column of water is purposely mixed with air bubbles generated through turbulence at the high level intake. This is allowed to fall down a shaft into a subterranean, high-roofed chamber where the now-compressed air separates from the water and becomes trapped. The height of falling water column maintains compression of the air in the top of the chamber, while an outlet, submerged below the water level in the chamber allows water to flow back to the surface at a slightly lower level than the intake. A separate outlet in the roof of the chamber supplies the compressed air to the surface. A facility on this principle was built on the [[Montreal River (Timiskaming District)|Montreal River]] at Ragged Shutes near [[Cobalt, Ontario]] in 1910 and supplied 5,000 horsepower to nearby mines.<ref>{{cite journal|last=Maynard|first=Frank|date=November 1910|title=Five thousand horsepower from air bubbles|journal=Popular Mechanics|pages=Page 633|url=http://books.google.com/books?id=-N0DAAAAMBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false}}</ref>

===21st Century===
Having fallen out of favor during the late 20th century due to the disruptive ecological and social effects of large impoundments, hydropower enjoyed a revival by 2013 as international institutions such as the [[World Bank]] tried to find solutions to economic development which avoided adding substantial amounts of carbon to the atmosphere.<ref name=WP5813>{{cite news|title=World Bank turns to hydropower to square development with climate change|url=http://www.washingtonpost.com/business/economy/world-bank-turns-to-hydropower-to-square-development-with-climate-change/|accessdate=May 9, 2013|newspaper=The Washington Post|date=May 8, 2013|author=Howard Schneider}}</ref>

== Hydropower types ==
{{Main|Hydroelectricity}}
Hydropower is used primarily to generate [[electricity]]. Broad categories include:
[[File:Hydroelectric dam.svg|thumb|200px|right|A [[Hydroelectricity#Generating methods|conventional]] dammed-hydro facility (hydroelectric dam) is the most common type of hydroelectric power generation.]]
* [[Hydroelectricity#Generating methods|Conventional hydroelectric]], referring to hydroelectric dams.
* [[Run-of-the-river hydroelectricity]], which captures the kinetic energy in rivers or streams, without the use of dams.
* [[Small hydro]] projects are 10 megawatts or less and often have no artificial reservoirs.
* [[Micro hydro]] projects provide a few kilowatts to a few hundred kilowatts to isolated homes, villages, or small industries.
* [[Pumped-storage hydroelectricity]] stores water pumped during periods of low demand to be released for generation when demand is high.

== Calculating the amount of available power ==
A hydropower resource can be evaluated by its available [[Power (physics)|power]]. Power is a function of the hydraulic [[head (hydraulic)|head]] and [[rate of fluid flow]]. The head is the energy per unit weight (or unit mass) of water. The static head is proportional to the difference in height through which the water falls. Dynamic head is related to the velocity of moving water. Each unit of water can do an amount of work equal to its weight times the head.

The power available from falling water can be calculated from the flow rate and density of water, the height of fall, and the local acceleration due to gravity.
In SI units, the power is:

<math>P=\eta\rho\,Qgh\!</math>

where
* P is power in watts
* η is the dimensionless efficiency of the turbine
* ρ is the density of water in kilograms per cubic metre
* Q is the flow in cubic metres per second
* g is the acceleration due to gravity
* h is the height difference between inlet and outlet

To illustrate, power is calculated for a turbine that is 85% efficient, with water at 62.25 pounds/cubic foot (998&nbsp;kg/cubic metre) and a flow rate of 2800 cubic-feet/second (79.3 cubic-meters/second), gravity of 9.80 metres per second squared and with a net head of 480&nbsp;ft (146.3 m).

In SI units:
:<math>\text{Power (MW)} = 0.85\times \frac{998 \times 79.3 \times 9.80 \times 146.3 } {1000000} </math> which gives 96.4 MW

In English units, the density is given in pounds per cubic foot so acceleration due to gravity is inherent in the unit of weight. A conversion factor is required to change from foot lbs/second to kilowatts:
:<math>\text{Power (MW)} = 0.85\times \frac{62.25 \times 2800 \times 480 } {(1000 \times 737.5)} </math> which gives 96.4 MW

Operators of hydroelectric plants will compare the total electrical energy produced with the theoretical potential energy of the water passing through the turbine to calculate efficiency. Procedures and definitions for calculation of efficiency are given in test codes such as [[ASME]] PTC 18 and [[International Electrotechnical Commission|IEC]] 60041. Field testing of turbines is used to validate the manufacturer's guaranteed efficiency. Detailed calculation of the efficiency of a hydropower turbine will account for the head lost due to flow friction in the power canal or penstock, rise in tail water level due to flow, the location of the plant and effect of varying gravity, the temperature and barometric pressure of the air, the density of the water at ambient temperature, and the altitudes above sea level of the forebay and tailbay. For precise calculations, errors due to rounding and the number of [[significant digit]]s of constants must be considered.

Some hydropower systems such as [[water wheel]]s can draw power from the flow of a body of water without necessarily changing its height. In this case, the available power is the [[kinetic energy]] of the flowing water. Over-shot water wheels can efficiently capture both types of energy.

The water flow in a stream can vary widely from season to season. Development of a hydropower site requires analysis of [[streamflow|flow records]], sometimes spanning decades, to assess the reliable annual energy supply. Dams and reservoirs provide a more dependable source of power by smoothing seasonal changes in water flow. However reservoirs have significant [[Environmental impact of reservoirs|environmental impact]], as does alteration of naturally occurring stream flow. The design of dams must also account for the worst-case, "probable maximum flood" that can be expected at the site; a [[spillway]] is often included to bypass flood flows around the dam. A computer [[Hydrological modelling|model of the hydraulic basin]] and rainfall and snowfall records are used to predict the maximum flood.

== See also ==
{{Portal|Energy|Renewable energy}}
* [[Deep water source cooling]]
* [[International Hydropower Association]]
* [[Marine energy]]
* [[Marine current power]]
* [[Osmotic power]]
* [[Ocean thermal energy]]
* [[Tidal power]]
* [[Wave power]]
* [[Low head hydro power]]

== References ==
{{reflist|colwidth=30em}}

== External links ==
{{Commons category}}
* [http://www.hydropower.org International Hydropower Association]
* [http://www.ich.no/ International Centre for Hydropower (ICH)] hydropower portal with links to numerous organizations related to hydropower worldwide
* [http://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID,FSP_LANG_ID:1228,25 IEC TC 4: Hydraulic turbines] (International Electrotechnical Commission - Technical Committee 4) IEC TC 4 portal with access to scope, documents and [http://tc4.iec.ch/index-tc4.html TC 4 website]
* [http://www.itdg.org/docs/technical_information_service/micro_hydro_power.pdf Micro-hydro power], Adam Harvey, 2004, Intermediate Technology Development Group, retrieved 1 January 2005
* [http://www.eere.energy.gov/consumer/your_home/electricity/index.cfm/mytopic=11050 Microhydropower Systems], US Department of Energy, Energy Efficiency and Renewable Energy, 2005

{{Hydropower}}
{{Hydropower}}



Revision as of 02:24, 17 May 2013

Saint Anthony Falls, United States; hydropower was used here to mill flour.

Hydropower or water power is cool coz yolo #SWAG #kyleissocoollike