Jump to content

Hypertopology

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Tom.Reding (talk | contribs) at 23:20, 8 November 2017 (WL 1 first-publisher; WP:GenFixes on; using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In the mathematical branch of topology, a hyperspace (or a space equipped with a hypertopology) is a topological space, which consists of the set CL(X) of all closed subsets of another topological space X, equipped with a topology so that the canonical map

is a homeomorphism onto its image. As a consequence, a copy of the original space X lives inside hyperspace CL(X).[1] [2]

Early examples of hypertopology include the Hausdorff metric[3] and Vietoris topology.[4]

See also

References

  1. ^ Lucchetti, Roberto; Angela Pasquale (1994). "A New Approach to a Hyperspace Theory" (PDF). Journal of Convex Analysis. 1 (2): 173–193. Retrieved 20 January 2013.
  2. ^ Beer, G. (1994). Topologies on closed and closed convex sets. Kluwer Academic Publishers.
  3. ^ Hausdorff, F. (1927). Mengenlehre. Berlin and Leipzig: W. de Gruyter.
  4. ^ Vietoris, L. (1921). "Stetige Mengen". Monatsh. Fur Math. Und Phys. 31: 173–204. doi:10.1007/BF01702717.