Jump to content

Igusa quartic

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by David Eppstein (talk | contribs) at 06:57, 15 February 2017 ({{algebraic-geometry-stub}}). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In algebraic geometry, the Igusa quartic (also called the Castelnuovo–Richmond quartic CR4 or the Castelnuovo–Richmond–Igusa quartic) is a quartic hypersurface in 4-dimensional projective space, studied by Igusa (1962). It is closely related to the moduli space of genus 2 curves with level 2 structure. It is the dual of the Segre cubic.

It can be given as a codimension 2 variety in P5 by the equations

References

  • Dolgachev, Igor V. (2012), Classical Algebraic Geometry: a modern view (PDF), Cambridge University Press, ISBN 978-1-107-01765-8
  • Hunt, Bruce (1996), The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, vol. 1637, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0094399, ISBN 978-3-540-61795-2, MR 1438547
  • Igusa, Jun-ichi (1962), "On Siegel Modular Forms of Genus Two", American Journal of Mathematics, 84 (1), The Johns Hopkins University Press: 175–200, doi:10.2307/2372812, ISSN 0002-9327, JSTOR 2372812