From Wikipedia, the free encyclopedia
In mathematics , the integral representation theorem for classical Wiener space is a result in the fields of measure theory and stochastic analysis . Essentially, it shows how to decompose a function on classical Wiener space into the sum of its expected value and an Itō integral .
Statement of the theorem
Let
C
0
(
[
0
,
T
]
;
R
)
{\displaystyle C_{0}([0,T];\mathbb {R} )}
(or simply
C
0
{\displaystyle C_{0}}
for short) be classical Wiener space with classical Wiener measure
γ
{\displaystyle \gamma }
. If
F
∈
L
2
(
C
0
;
R
)
{\displaystyle F\in L^{2}(C_{0};\mathbb {R} )}
, then there exists a unique Itō integrable process
α
F
:
[
0
,
T
]
×
C
0
→
R
{\displaystyle \alpha ^{F}:[0,T]\times C_{0}\to \mathbb {R} }
(i.e. in
L
2
(
B
)
{\displaystyle L^{2}(B)}
, where
B
{\displaystyle B}
is canonical Brownian motion ) such that
F
(
σ
)
=
∫
C
0
F
(
p
)
d
γ
(
p
)
+
∫
0
T
α
F
(
σ
)
t
d
σ
t
{\displaystyle F(\sigma )=\int _{C_{0}}F(p)\,\mathrm {d} \gamma (p)+\int _{0}^{T}\alpha ^{F}(\sigma )_{t}\,\mathrm {d} \sigma _{t}}
for
γ
{\displaystyle \gamma }
-almost all
σ
∈
C
0
{\displaystyle \sigma \in C_{0}}
.
In the above,
∫
C
0
F
(
p
)
d
γ
(
p
)
=
E
[
F
]
{\displaystyle \int _{C_{0}}F(p)\,\mathrm {d} \gamma (p)=\mathbb {E} [F]}
is the expected value of
F
{\displaystyle F}
; and
the integral
∫
0
T
⋯
d
σ
t
{\displaystyle \int _{0}^{T}\cdots \,\mathrm {d} \sigma _{t}}
is an Itō integral.
The proof of the integral representation theorem requires the Clark-Ocone theorem from the Malliavin calculus .
Corollary: integral representation for an arbitrary probability space
Let
(
Ω
,
F
,
P
)
{\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} )}
be a probability space . Let
B
:
[
0
,
T
]
×
Ω
→
R
{\displaystyle B:[0,T]\times \Omega \to \mathbb {R} }
be a Brownian motion (i.e. a stochastic process whose law is Wiener measure ). Let
{
F
t
|
0
≤
t
≤
T
}
{\displaystyle \{{\mathcal {F}}_{t}|0\leq t\leq T\}}
be the natural filtration of
F
{\displaystyle {\mathcal {F}}}
by the Brownian motion
B
{\displaystyle B}
:
F
t
=
σ
{
B
s
−
1
(
A
)
|
A
∈
B
o
r
e
l
(
R
)
,
0
≤
s
≤
t
}
.
{\displaystyle {\mathcal {F}}_{t}=\sigma \{B_{s}^{-1}(A)|A\in \mathrm {Borel} (\mathbb {R} ),0\leq s\leq t\}.}
Suppose that
f
∈
L
2
(
Ω
;
R
)
{\displaystyle f\in L^{2}(\Omega ;\mathbb {R} )}
is
F
T
{\displaystyle {\mathcal {F}}_{T}}
-measurable. Then there is a unique Itō integrable process
a
f
∈
L
2
(
B
)
{\displaystyle a^{f}\in L^{2}(B)}
such that
f
=
E
[
f
]
+
∫
0
T
a
t
f
d
B
t
{\displaystyle f=\mathbb {E} [f]+\int _{0}^{T}a_{t}^{f}\,\mathrm {d} B_{t}}
P
{\displaystyle \mathbb {P} }
-almost surely.
References
Mao Xuerong. Stochastic differential equations and their applications. Chichester: Horwood. (1997)