Jump to content

Jacob's ladder surface

From Wikipedia, the free encyclopedia
(Redirected from Jacob's ladder (manifold))

In mathematics, Jacob's ladder is a surface with infinite genus and two ends. It was named after Jacob's ladder by Étienne Ghys (1995, Théorème A), because the surface can be constructed as the boundary of a ladder that is infinitely long in both directions.

See also

[edit]

References

[edit]
  • Ghys, Étienne (1995), "Topologie des feuilles génériques", Annals of Mathematics, Second Series, 141 (2): 387–422, doi:10.2307/2118526, ISSN 0003-486X, JSTOR 2118526, MR 1324140
  • Walczak, Paweł (2004), Dynamics of foliations, groups and pseudogroups, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 64, Birkhäuser Verlag, ISBN 978-3-7643-7091-6, MR 2056374