Jump to content

Jacob's ladder surface

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by JCW-CleanerBot (talk | contribs) at 01:18, 9 December 2017 (task, replaced: journal=Annals of Mathematics. Second Series → journal=Annals of Mathematics |series=Second Series using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, Jacob's ladder is a surface with infinite genus and two ends. It was named after Jacob's ladder by Étienne Ghys (1995, Théorème A), because the surface can be constructed as the boundary of a ladder that is infinitely long in both directions.

See also

References

  • Ghys, Étienne (1995), "Topologie des feuilles génériques", Annals of Mathematics, Second Series, 141 (2): 387–422, doi:10.2307/2118526, ISSN 0003-486X, MR 1324140
  • Walczak, Paweł (2004), Dynamics of foliations, groups and pseudogroups, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 64, Birkhäuser Verlag, ISBN 978-3-7643-7091-6, MR 2056374