In complex analysis , Jordan's lemma is a result frequently used in conjunction with the residue theorem to evaluate contour integrals and improper integrals . It is named after the French mathematician Camille Jordan .
Statement
Consider a complex -valued, continuous function f , defined on a semicircular contour
C
R
=
{
R
e
i
θ
∣
θ
∈
[
0
,
π
]
}
{\displaystyle C_{R}=\{Re^{i\theta }\mid \theta \in [0,\pi ]\}}
of positive radius R lying in the upper half-plane , centred at the origin. If the function f is of the form
f
(
z
)
=
e
i
a
z
g
(
z
)
,
z
∈
C
R
,
{\displaystyle f(z)=e^{iaz}g(z),\quad z\in C_{R},}
with a positive parameter a , then Jordan's lemma states the following upper bound for the contour integral:
|
∫
C
R
f
(
z
)
d
z
|
≤
π
a
M
R
where
M
R
:=
max
θ
∈
[
0
,
π
]
|
g
(
R
e
i
θ
)
|
.
{\displaystyle \left|\int _{C_{R}}f(z)\,dz\right|\leq {\frac {\pi }{a}}M_{R}\quad {\text{where}}\quad M_{R}:=\max _{\theta \in [0,\pi ]}\left|g\left(Re^{i\theta }\right)\right|.}
where equal sign is when g vanishes everywhere. An analogous statement for a semicircular contour in the lower half-plane holds when a < 0 .
If f is continuous on the semicircular contour CR for all large R and
lim
R
→
∞
M
R
=
0
{\displaystyle \lim _{R\to \infty }M_{R}=0}
(* )
then by Jordan's lemma
lim
R
→
∞
∫
C
R
f
(
z
)
d
z
=
0.
{\displaystyle \lim _{R\to \infty }\int _{C_{R}}f(z)\,dz=0.}
For the case a = 0 , see the estimation lemma .
Compared to the estimation lemma, the upper bound in Jordan's lemma does not explicitly depend on the length of the contour CR .
Application of Jordan's lemma
The path C is the concatenation of the paths C 1 and C 2 .
Jordan's lemma yields a simple way to calculate the integral along the real axis of functions f (z ) = ei a z g (z ) holomorphic on the upper half-plane and continuous on the closed upper half-plane, except possibly at a finite number of non-real points z 1 , z 2 , …, zn . Consider the closed contour C , which is the concatenation of the paths C 1 and C 2 shown in the picture. By definition,
∮
C
f
(
z
)
d
z
=
∫
C
1
f
(
z
)
d
z
+
∫
C
2
f
(
z
)
d
z
.
{\displaystyle \oint _{C}f(z)\,dz=\int _{C_{1}}f(z)\,dz+\int _{C_{2}}f(z)\,dz\,.}
Since on C 2 the variable z is real, the second integral is real:
∫
C
2
f
(
z
)
d
z
=
∫
−
R
R
f
(
x
)
d
x
.
{\displaystyle \int _{C_{2}}f(z)\,dz=\int _{-R}^{R}f(x)\,dx\,.}
The left-hand side may be computed using the residue theorem to get, for all R larger than the maximum of |z 1 | , |z 2 | , …, |zn | ,
∮
C
f
(
z
)
d
z
=
2
π
i
∑
k
=
1
n
Res
(
f
,
z
k
)
,
{\displaystyle \oint _{C}f(z)\,dz=2\pi i\sum _{k=1}^{n}\operatorname {Res} (f,z_{k})\,,}
where Res(f , zk ) denotes the residue of f at the singularity zk . Hence, if f satisfies condition (* ), then taking the limit as R tends to infinity, the contour integral over C 1 vanishes by Jordan's lemma and we get the value of the improper integral
∫
−
∞
∞
f
(
x
)
d
x
=
2
π
i
∑
k
=
1
n
Res
(
f
,
z
k
)
.
{\displaystyle \int _{-\infty }^{\infty }f(x)\,dx=2\pi i\sum _{k=1}^{n}\operatorname {Res} (f,z_{k})\,.}
Example
The function
f
(
z
)
=
e
i
z
1
+
z
2
,
z
∈
C
∖
{
i
,
−
i
}
,
{\displaystyle f(z)={\frac {e^{iz}}{1+z^{2}}},\qquad z\in {\mathbb {C} }\setminus \{i,-i\},}
satisfies the condition of Jordan's lemma with a = 1 for all R > 0 with R ≠ 1 . Note that, for R > 1 ,
M
R
=
max
θ
∈
[
0
,
π
]
1
|
1
+
R
2
e
2
i
θ
|
=
1
R
2
−
1
,
{\displaystyle M_{R}=\max _{\theta \in [0,\pi ]}{\frac {1}{|1+R^{2}e^{2i\theta }|}}={\frac {1}{R^{2}-1}}\,,}
hence (* ) holds. Since the only singularity of f in the upper half plane is at z = i , the above application yields
∫
−
∞
∞
e
i
x
1
+
x
2
d
x
=
2
π
i
Res
(
f
,
i
)
.
{\displaystyle \int _{-\infty }^{\infty }{\frac {e^{ix}}{1+x^{2}}}\,dx=2\pi i\,\operatorname {Res} (f,i)\,.}
Since z = i is a simple pole of f and 1 + z 2 = (z + i )(z − i ) , we obtain
Res
(
f
,
i
)
=
lim
z
→
i
(
z
−
i
)
f
(
z
)
=
lim
z
→
i
e
i
z
z
+
i
=
e
−
1
2
i
{\displaystyle \operatorname {Res} (f,i)=\lim _{z\to i}(z-i)f(z)=\lim _{z\to i}{\frac {e^{iz}}{z+i}}={\frac {e^{-1}}{2i}}}
so that
∫
−
∞
∞
cos
x
1
+
x
2
d
x
=
Re
∫
−
∞
∞
e
i
x
1
+
x
2
d
x
=
π
e
.
{\displaystyle \int _{-\infty }^{\infty }{\frac {\cos x}{1+x^{2}}}\,dx=\operatorname {Re} \int _{-\infty }^{\infty }{\frac {e^{ix}}{1+x^{2}}}\,dx={\frac {\pi }{e}}\,.}
This result exemplifies the way some integrals difficult to compute with classical methods are easily evaluated with the help of complex analysis.
Proof of Jordan's lemma
By definition of the complex line integral ,
∫
C
R
f
(
z
)
d
z
=
∫
0
π
g
(
R
e
i
θ
)
e
i
a
R
(
cos
θ
+
i
sin
θ
)
i
R
e
i
θ
d
θ
=
R
∫
0
π
g
(
R
e
i
θ
)
e
a
R
(
i
cos
θ
−
sin
θ
)
i
e
i
θ
d
θ
.
{\displaystyle \int _{C_{R}}f(z)\,dz=\int _{0}^{\pi }g(Re^{i\theta })\,e^{iaR(\cos \theta +i\sin \theta )}\,iRe^{i\theta }\,d\theta =R\int _{0}^{\pi }g(Re^{i\theta })\,e^{aR(i\cos \theta -\sin \theta )}\,ie^{i\theta }\,d\theta \,.}
Now the inequality
|
∫
a
b
f
(
x
)
d
x
|
≤
∫
a
b
|
f
(
x
)
|
d
x
{\displaystyle {\biggl |}\int _{a}^{b}f(x)\,dx{\biggr |}\leq \int _{a}^{b}\left|f(x)\right|\,dx}
yields
I
R
:=
|
∫
C
R
f
(
z
)
d
z
|
≤
R
∫
0
π
|
g
(
R
e
i
θ
)
e
a
R
(
i
cos
θ
−
sin
θ
)
i
e
i
θ
|
d
θ
=
R
∫
0
π
|
g
(
R
e
i
θ
)
|
e
−
a
R
sin
θ
d
θ
.
{\displaystyle I_{R}:={\biggl |}\int _{C_{R}}f(z)\,dz{\biggr |}\leq R\int _{0}^{\pi }{\bigl |}g(Re^{i\theta })\,e^{aR(i\cos \theta -\sin \theta )}\,ie^{i\theta }{\bigr |}\,d\theta =R\int _{0}^{\pi }{\bigl |}g(Re^{i\theta }){\bigr |}\,e^{-aR\sin \theta }\,d\theta \,.}
Using MR as defined in (* ) and the symmetry sin θ = sin(π – θ ) , we obtain
I
R
≤
R
M
R
∫
0
π
e
−
a
R
sin
θ
d
θ
=
2
R
M
R
∫
0
π
/
2
e
−
a
R
sin
θ
d
θ
.
{\displaystyle I_{R}\leq RM_{R}\int _{0}^{\pi }e^{-aR\sin \theta }\,d\theta =2RM_{R}\int _{0}^{\pi /2}e^{-aR\sin \theta }\,d\theta \,.}
Since the graph of sin θ is concave on the interval θ ∈ [0, π ⁄ 2] , the graph of sin θ lies above the straight line connecting its endpoints, hence
sin
θ
≥
2
θ
π
{\displaystyle \sin \theta \geq {\frac {2\theta }{\pi }}\quad }
for all θ ∈ [0, π ⁄ 2] , which further implies
I
R
≤
2
R
M
R
∫
0
π
/
2
e
−
2
a
R
θ
/
π
d
θ
=
π
a
(
1
−
e
−
a
R
)
M
R
≤
π
a
M
R
.
{\displaystyle I_{R}\leq 2RM_{R}\int _{0}^{\pi /2}e^{-2aR\theta /\pi }\,d\theta ={\frac {\pi }{a}}(1-e^{-aR})M_{R}\leq {\frac {\pi }{a}}M_{R}\,.}
See also
References
Brown, James W.; Churchill, Ruel V. (2004). Complex Variables and Applications (7th ed.). New York: McGraw Hill. pp. 262–265. ISBN 0-07-287252-7 .