Kleisli category
In category theory, a Kleisli category is a category naturally associated to any monad T. It is equivalent to the category of free T-algebras. The Kleisli category is one of two extremal solutions to the question Does every monad arise from an adjunction? The other extremal solution is the Eilenberg–Moore category. Kleisli categories are named for the mathematician Heinrich Kleisli.
Formal definition
Let〈T, η, μ〉be a monad over a category C. The Kleisli category of C is the category CT whose objects and morphisms are given by
That is, every morphism f: X → T Y in C (with codomain TY) can also be regarded as a morphism in CT (but with codomain Y). Composition of morphisms in CT is given by
where f: X → T Y and g: Y → T Z. The identity morphism is given by the monad unit η:
- .
An alternative way of writing this, which clarifies the category in which each object lives, is used by Mac Lane.[1] We use very slightly different notation for this presentation. Given the same monad and category as above, we associate with each object in a new object , and for each morphism in a morphism . Together, these objects and morphisms form our category , where we define
Then the identity morphism in is
Extension operators and Kleisli triples
Composition of Kleisli arrows can be expressed succinctly by means of the extension operator (-)* : Hom(X, TY) → Hom(TX, TY). Given a monad 〈T, η, μ〉over a category C and a morphism f : X → TY let
Composition in the Kleisli category CT can then be written
The extension operator satisfies the identities:
where f : X → TY and g : Y → TZ. It follows trivially from these properties that Kleisli composition is associative and that ηX is the identity.
In fact, to give a monad is to give a Kleisli triple, i.e.
- A function ;
- For each object in , a morphism ;
- For each morphism in , a morphism
such that the above three equations for extension operators are satisfied.
Kleisli adjunction
Kleisli categories were originally defined in order to show that every monad arises from an adjunction. That construction is as follows.
Let〈T, η, μ〉be a monad over a category C and let CT be the associated Kleisli category. Define a functor F : C → CT by
and a functor G : CT → C by
One can show that F and G are indeed functors and that F is left adjoint to G. The counit of the adjunction is given by
Finally, one can show that T = GF and μ = GεF so that 〈T, η, μ〉is the monad associated to the adjunction 〈F, G, η, ε〉.
External links
- Kleisli category at the nLab
References
- ^ Mac Lane(1998) p.147
- Mac Lane, Saunders (1998). Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5 (2nd ed.). New York, NY: Springer-Verlag. ISBN 0-387-98403-8. Zbl 0906.18001.
- Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004). Categorical foundations. Special topics in order, topology, algebra, and sheaf theory. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: Cambridge University Press. ISBN 0-521-83414-7. Zbl 1034.18001.