Jump to content

Lebesgue's lemma

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Addbot (talk | contribs) at 08:34, 14 March 2013 (Bot: Migrating 2 interwiki links, now provided by Wikidata on d:q3229342). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

For Lebesgue's lemma for open covers of compact spaces in topology see Lebesgue's number lemma

In mathematics, Lebesgue's lemma is an important statement in approximation theory. It provides a bound for the projection error.

Statement

Let (V, ||·||) be a normed vector space, U be a subspace of V and let be a linear projector on . Then, for each v in V:

See also