Jump to content

Lester's theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 78.56.190.177 (talk) at 06:13, 21 October 2016 (Generalisation). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Fermat points , the center of the nine-point circle (light blue), and the circumcenter of the green triangle lie on the Lester circle (black).

In Euclidean plane geometry, Lester's theorem, named after June Lester, states that in any scalene triangle, the two Fermat points, the nine-point center, and the circumcenter lie on the same circle.

Proofs

Gibert's proof using the Kiepert hyperbola

Lester's circle theorem follows from a more general result by B. Gibert (2000); namely, that every circle whose diameter is a chord of the Kiepert hyperbola of the triangle and is perpendicular to its Euler line passes through the Fermat points.[1] [2]

Dao's lemma on the rectangular hyperbola

Dao's lemma on a rectangular hyperbola

In 2014, Dao Thanh Oai showed that Gibert's result follows from a property of rectangular hyperbolas. Namely, let and lie on one branch of a rectangular hyperbola , and and be the two points on , symmetrical about its center (antipodal points), where the tangents at are parallel to the line ,

Let and two points on the hyperbola the tangents at which intersect at a point on the line . If the line intersects at , and the perpendicular bisector of intersects the hyperbola at and , then the six points lie on a circle.

To get Lester's theorem from this result, take as the Kiepert hyperbola of the triangle, take to be its Fermat points, be the inner and outer Vecten points, be the orthocenter and the centroid of the triangle.[3]

Generalisation

A generalization Lester circle associated with Neuberg cubic: lie on a circle

A conjectured generalization of the Lester theorem was published in Encyclopedia of Triangle Centers as follows: Let be a point on the Neuberg cubic. Let be the reflection of in line , and define and cyclically. It is known that the lines , , are concurrent. Let be the point of concurrency. Then the following 4 points lie on a circle: , , , . [4] When , it is well-known that , the conjecture becomes Lester theorem.

See also

Notes

  1. ^ Paul Yiu (2010), The circles of Lester, Evans, Parry, and their generalizations. Forum Geometricorum, volume 10, pages 175–209. MR2868943
  2. ^ B. Gibert (2000): [ Message 1270]. Entry in the Hyacinthos online forum, 2000-08-22. Accessed on 2014-10-09.
  3. ^ Dao Thanh Oai (2014), A Simple Proof of Gibert’s Generalization of the Lester Circle Theorem Forum Geometricorum, volume 14, pages 201–202. MR3208157
  4. ^ "X(7668) = POLE OF X(115)X(125) WITH RESPECT TO THE NINE-POINT CIRCLE". 2015-06-01.

References

  • Clark Kimberling, "Lester Circle", Mathematics Teacher, volume 89, number 26, 1996.
  • June A. Lester, "Triangles III: Complex triangle functions", Aequationes Mathematicae, volume 53, pages 4–35, 1997.
  • Michael Trott, "Applying GroebnerBasis to Three Problems in Geometry", Mathematica in Education and Research, volume 6, pages 15–28, 1997.
  • Ron Shail, "A proof of Lester's Theorem", Mathematical Gazette, volume 85, pages 225–232, 2001.
  • John Rigby, "A simple proof of Lester's theorem", Mathematical Gazette, volume 87, pages 444–452, 2003.
  • J.A. Scott, "On the Lester circle and the Archimedean triangle", Mathematical Gazette, volume 89, pages 498–500, 2005.
  • Michael Duff, "A short projective proof of Lester's theorem", Mathematical Gazette, volume 89, pages 505–506, 2005.
  • Stan Dolan, "Man versus Computer", Mathematical Gazette, volume 91, pages 469–480, 2007.