Jump to content

Malcev-admissible algebra

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Rjwilmsi (talk | contribs) at 12:57, 16 May 2018 (References: Journal cites, added 1 DOI). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In algebra, a Malcev-admissible algebra, introduced by Myung (1983), is a (possibly non-associative) algebra that becomes a Malcev algebra under the bracket [a,b] = ab – ba. Examples include associative algebras, Lie-admissible algebras, and Okubo algebras.

See also

References

  • Albert, A. Adrian (1948), "Power-associative rings", Transactions of the American Mathematical Society, 64: 552–593, doi:10.2307/1990399, JSTOR 1990399, MR 0027750
  • "Lie-admissible_algebra", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Myung, Hyo Chul (1980), "Flexible Malʹcev-admissible algebras", Hadronic Journal, 4 (6): 2033–2136, MR 0637500
  • Myung, Hyo Chul (1986), Malcev-admissible algebras, Progress in Mathematics, vol. 64, Boston, MA: Birkhäuser Boston, doi:10.1007/978-1-4899-6661-2, ISBN 0-8176-3345-6, MR 0885089